付費限定

從生活認識微積分(十)什麼是「微分」(下)

更新於 發佈於 閱讀時間約 1 分鐘
raw-image
  上篇文章介紹物理學家如何定義瞬時速度,本篇文章將延續上回文章脈絡,帶領讀者從回顧瞬時速度的由來,一般化瞬時速度的定義,最後引入導數和可微分的的定義,說明導數、瞬間變化率、可微分,牽涉到同一極限的觀念,讓讀者由現實世界逐步走入抽象世界。

一、回顧:瞬時速度的由來

  在上篇文章中,我們介紹了物理學家的思維,如何求貓咪奔跑時第3秒的瞬時速度。因為速度就是位置對時間的變化率,雖然求的是第3秒那一眨眼間貓咪奔跑的速度,但不可能只觀測貓咪在第3秒時的位置,就能得到瞬時速度,因為只有一個時間點和一個位置,要如何求得「變化率」呢?一個時間點豈有「時間間隔」與「位置變化」呢?

以行動支持創作者!付費即可解鎖
本篇內容共 2779 字、0 則留言,僅發佈於從生活看數學你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
Caspar的沙龍
121會員
31內容數
由於學校上課時間有限,老師礙於進度壓力,時常無法慢慢一步步地帶領學生思考和理解數學中的觀念,而是倉促講解完概念後,開始進入計算解題。然而數學不單是計算而已,數學真正的精髓卻是在於背後觀念中,邏輯的推演與歸納。也因此期盼透過本專題的數學科普文,能幫助讀者看見數學的美,並提升讀者的思考、推理邏輯能力。
Caspar的沙龍的其他內容
2020/01/20
  各位「從生活中看數學」讀者好,感謝這一年來大家的支持與閱讀。由於文章撰寫時間耗時較多,長文主要在暑假更新為主,所以未來除了文章撰寫之外,會以影音呈現數學的觀念,每個禮拜會定時更新。 我的Youtube頻道: https://www.youtube.com/channel/UCnJW-b2uW
Thumbnail
2020/01/20
  各位「從生活中看數學」讀者好,感謝這一年來大家的支持與閱讀。由於文章撰寫時間耗時較多,長文主要在暑假更新為主,所以未來除了文章撰寫之外,會以影音呈現數學的觀念,每個禮拜會定時更新。 我的Youtube頻道: https://www.youtube.com/channel/UCnJW-b2uW
Thumbnail
2019/08/21
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
2019/08/21
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
2019/08/17
  數學是一門嚴謹的語言,數學家們在公理和定義的基礎上,發掘並證明一個又一個的定理;數學證明的過程,好比偵探辦案一樣。偵探要有比常人好的推理能力和語言能力,語言能力須超出常人,才能透過用字遣詞、其他學科的背景知識發覺字裡行間所隱藏的象徵與意義,最後找出真相。本篇文章延續上篇介紹的公理與定義,說明數
Thumbnail
2019/08/17
  數學是一門嚴謹的語言,數學家們在公理和定義的基礎上,發掘並證明一個又一個的定理;數學證明的過程,好比偵探辦案一樣。偵探要有比常人好的推理能力和語言能力,語言能力須超出常人,才能透過用字遣詞、其他學科的背景知識發覺字裡行間所隱藏的象徵與意義,最後找出真相。本篇文章延續上篇介紹的公理與定義,說明數
Thumbnail
看更多
你可能也想看
Thumbnail
TOMICA第一波推出吉伊卡哇聯名小車車的時候馬上就被搶購一空,一直很扼腕當時沒有趕緊入手。前陣子閒來無事逛蝦皮,突然發現幾家商場都又開始重新上架,價格也都回到正常水準,估計是官方又再補了一批貨,想都沒想就立刻下單! 同文也跟大家分享近期蝦皮購物紀錄、好用推薦、蝦皮分潤計畫的聯盟行銷!
Thumbnail
TOMICA第一波推出吉伊卡哇聯名小車車的時候馬上就被搶購一空,一直很扼腕當時沒有趕緊入手。前陣子閒來無事逛蝦皮,突然發現幾家商場都又開始重新上架,價格也都回到正常水準,估計是官方又再補了一批貨,想都沒想就立刻下單! 同文也跟大家分享近期蝦皮購物紀錄、好用推薦、蝦皮分潤計畫的聯盟行銷!
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
「每秒公尺是速度還是速率?」你問 「是速度也是速率。」我答 「那速度與速率有何不同?」你再問 「速度有方向性,速率沒有;速度是向量,速率是純量。」 沒有方向感的人生,是繞圈的速率 從起點又回到原點,有了移動的距離,卻未曾有過位移 找到方向感的人生,有了移動的距離,也有實質的位移 那種每
Thumbnail
「每秒公尺是速度還是速率?」你問 「是速度也是速率。」我答 「那速度與速率有何不同?」你再問 「速度有方向性,速率沒有;速度是向量,速率是純量。」 沒有方向感的人生,是繞圈的速率 從起點又回到原點,有了移動的距離,卻未曾有過位移 找到方向感的人生,有了移動的距離,也有實質的位移 那種每
Thumbnail
1.1 函數與圖形 定義域、對應域,每一元素只能對應一個函數值 (即不能一對多) 多項式函數、三角、指對 a>0,拋物線開口向上 a<0,拋物線開口向下 1.2 連續函數與極限 極限(Limit): limx→ ∞an = L f(x)在x=a是連續的,條件有三: e=2.718
Thumbnail
1.1 函數與圖形 定義域、對應域,每一元素只能對應一個函數值 (即不能一對多) 多項式函數、三角、指對 a>0,拋物線開口向上 a<0,拋物線開口向下 1.2 連續函數與極限 極限(Limit): limx→ ∞an = L f(x)在x=a是連續的,條件有三: e=2.718
Thumbnail
完整標題:velocity 與「速之度」或「速度」或「速之態」或「速之態樣」或「物移速度」或「赴移速度」或「物移冗數於時」或「赴移冗數於時」的轉換密碼
Thumbnail
完整標題:velocity 與「速之度」或「速度」或「速之態」或「速之態樣」或「物移速度」或「赴移速度」或「物移冗數於時」或「赴移冗數於時」的轉換密碼
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
Thumbnail
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
Thumbnail
  上篇文章介紹物理學家如何定義瞬時速度,本篇文章將延續上回文章脈絡,帶領讀者從回顧瞬時速度的由來,一般化瞬時速度的定義,最後引入導數和可微分的的定義,說明導數、瞬間變化率、可微分,牽涉到同一極限的觀念,讓讀者由現實世界逐步走入抽象世界。
Thumbnail
  上篇文章介紹物理學家如何定義瞬時速度,本篇文章將延續上回文章脈絡,帶領讀者從回顧瞬時速度的由來,一般化瞬時速度的定義,最後引入導數和可微分的的定義,說明導數、瞬間變化率、可微分,牽涉到同一極限的觀念,讓讀者由現實世界逐步走入抽象世界。
Thumbnail
本篇文章延續先前主軸,且分上、下兩篇。上篇將主旨聚焦於單一例子:「瞬時速度」,透過討論貓咪奔跑之實例,複習並計算平均速度之定義,在說明瞬時速度的觀念,最後進一步鋪成下篇的抽象微分概念。
Thumbnail
本篇文章延續先前主軸,且分上、下兩篇。上篇將主旨聚焦於單一例子:「瞬時速度」,透過討論貓咪奔跑之實例,複習並計算平均速度之定義,在說明瞬時速度的觀念,最後進一步鋪成下篇的抽象微分概念。
Thumbnail
這是微積分科普系列文章的第四篇,在討論微分律之前,讀者需先認識斜率的定義,並能區分平均與瞬時變化率的差異。因為微分律由導數推衍而來,而導數即是求函數圖形上,某一點的切線斜率。本文從生活中的變化講起,提出變化率的計算方式,與數學中斜率的定義。
Thumbnail
這是微積分科普系列文章的第四篇,在討論微分律之前,讀者需先認識斜率的定義,並能區分平均與瞬時變化率的差異。因為微分律由導數推衍而來,而導數即是求函數圖形上,某一點的切線斜率。本文從生活中的變化講起,提出變化率的計算方式,與數學中斜率的定義。
Thumbnail
這是微積分科普系列文章的第三篇,本文分成兩個部分。第一部分:由於上文以極限的反思作結,告訴讀者透過實驗與推測,不能確定函數的極限,因此本文將以嚴格的數學定義,說明如何證明函數的極限,回答上文中的反思問題,了解定義後,未來再證明函數極限的加、減、乘、除;第二部分:將以生活對話向你解釋「無限大、無限小」
Thumbnail
這是微積分科普系列文章的第三篇,本文分成兩個部分。第一部分:由於上文以極限的反思作結,告訴讀者透過實驗與推測,不能確定函數的極限,因此本文將以嚴格的數學定義,說明如何證明函數的極限,回答上文中的反思問題,了解定義後,未來再證明函數極限的加、減、乘、除;第二部分:將以生活對話向你解釋「無限大、無限小」
Thumbnail
這是微積分科普系列文章的第二篇,本文將以生活情境向你解釋「靠近」的概念,了解趨近的含義後,再說明如何用數學語言表示極限,並讓讀者透過直覺的函數圖形和計算,了解函數極限的意義,最後引導讀者思考、提出質疑,更加嚴格的函數極限定義,應符合哪些要求。
Thumbnail
這是微積分科普系列文章的第二篇,本文將以生活情境向你解釋「靠近」的概念,了解趨近的含義後,再說明如何用數學語言表示極限,並讓讀者透過直覺的函數圖形和計算,了解函數極限的意義,最後引導讀者思考、提出質疑,更加嚴格的函數極限定義,應符合哪些要求。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News