付費限定
方格精選

[觀點] 人工智慧的回顧與展望 2019

更新 發佈閱讀 12 分鐘

給讀者的話:

這是十分鐘簡讀版,付費訂閱之後,便可閱讀本文更詳進的內容。

回顧 2018

在 2018 年,筆者介紹了普華永道(PwC)關於人工智慧的十項預測。這十項預測可以歸納為四個大項,分別為:

  1. 解釋深度學習和人工智慧 (Deep learning theory & Explainable AI)
  2. 模型不確定性和遷移學習(Model uncertainly & Transfer learning)
  3. 深度強化學習(Deep reinforcement learning)
  4. 膠囊網路和機率程式架構(Capsule networks & Probabilistic programming)

現在我們就來回顧一下,過去一年中,人工智慧的發展是否與當時 PwC 的預測相符合。

過去的一年中,機械學習演算法逐漸成為人們日常生活的一部分,許多議題被予以討論,甚至立法約束。

議題包括了在物件偵測和語言模型上,出現不可避免的偏見,如對特定種族或性別的偏好。這些偏見反映真實社會的現象,卻讓人工智慧是否能對社會整體產生正面效益產生懷疑。

至於物聯網的部分,2018 年我們歡迎智慧助理進駐家庭中成為家中的一份子。

雖然這個智慧助理還尚未能判別冰箱中哪些日常所需已用罄,並直接下單訂購,透過排程和最短路徑計算後,讓機械人遞送至住所。但,至少他們可以為你報新聞,甚至幫你預約理髮和牙醫約診「註一」。

多領域訓練(Multi-modal training)遷移學習(Transfer learning) 在過去一年,被廣泛應用,進而使以深度學習為主要推力的人工智慧,有了卓越的進步。

而這兩個技術的發展,則讓兩個長久在人工智慧領域各自獨立發展,自然語言與電腦視覺,開始結合,並導致更近似於人類理解能力,足以辨識語義的結合應用。

接下來,我們將要針對電腦視覺和自然語言這兩個領域的進展,做比較詳細的回顧。

電腦視覺

在過去電腦視覺的發展中,物體識別與偵測在研究領域中獲得相當卓越的進展,包括了高準確率和精準度,甚至在不大幅降低準確度的情況下,進行即時的物體偵測。

然而,電腦視覺在研究領域的進展似乎對實際的應用並無如虎添翼般的助益。相對地,我們在去年三月聽到第一起由 Uber 研發的自駕車的意外,在這起意外中,很不幸地造成了一名中年婦人的死亡。

Waymo 則在六月,因為人類駕駛未能警覺取得控制,而”貢獻”了另外一起自駕車意外,說明了目前的自駕軟體尚未能完全取代人類,成為完全值得信賴的駕車夥伴。

為了能更近一步探索類神經網路進行特徵工程的能力,便是借助於合成影像。

合成影像(Synthetic Data)

使用合成影像中,可以解決:

訓練資料的取樣誤差問題。誠如 PwC 2018 趨勢預測一文所述,類神經網路是對於訓練資料有強依賴性的演算法。透過合成影像,在物體偵測的任務中,可以建構擾動的環境燈光和低品質的訓練影像,進而縮小在真實世界中,因為環境和攝影器材的硬體限制,造成無法被模型解釋的隨機誤差。

除了上述問題外,合成影像亦可以達到像素層級的標注精準。像素層級的標注精準有助於目前發展的全景分割技術。

其次,則是配合 Merged Reality (MR) 應用發展出的 3D 合成影像。MR 是結合 Virtual Reality (VR)和擴增實境(Augmented Reality, AR) 兩種技術,而提出的新型應用,主要是希望藉由 AR 擴增使用者所處的真實環境,並讓使用者透過 VR 來經驗視覺探索。

除了仰賴合成資料,另外在 PwC 2018 趨勢預測一文中也指出,可以利用對抗生成網路(GAN)來產生和真實影像相近但帶有雜訊的影像。

對抗生成網路(GAN)

在過去一年中,GAN 不僅在架構上獲得改進,並結合其他技術來達成廣泛的應用。

最後,則是如 PwC 2018 趨勢預測一文指出,可以利用遷移學習來完成解決標注不足的問題。然而遷移學習的最大限制即是在於來源和目標領域(domain)的資料分布不可相差太遠,不然會產生 Domain Shift 的問題。

跨領域對映(Domain Adaptation)

關於 Domain Shift 問題,解決方案則是試著找到來源和目標領域的映射關係,稱為 Domain Adaptation 的研究。

接下來,我們要把注意力轉至自然語言領域中,雖然是全然不同的資料型態,但我們可以發現和電腦視覺相似的趨勢也可在自然語言領域中發覺。

自然語言

自然語言在過去的一年則獲得跳躍式的進展。如 OpenAI 的創辦人 Rachel Thomas 所指出,

2018 年對於自然語言,是進入電腦視覺中 ImageNet 的時代。

然而,如同電腦視覺目前面臨的挑戰,為了解決機械翻譯中部分語言所蒐集到的訓練資料不足的問題(該種語言多被稱為低資源語言),遷移學習廣泛地應用於自然語言中。相同的, Domain Adaptation 也企圖在序列型資料中找到一席之地。而目前的方法有利用半監督學習非監督的方式來解決標注不足的問題。

無全監督學習(Not Supervised Learning)

半監督學習(semi-supervised)的方法中,主要是利用已標注的訓練資料來學習未標注的訓練資料。另外一個趨勢則是利用應用於多任務(multi-tasking)學習中的 meta-learning 來解決。

表徵學習(Representation Learning)

在過去一年,令人側目的則是 contextualized-based word embedding 的發展,包括了 ELMo, ULMFiT 和 google 的 BERT

歸納偏見(Inductive bias)

Inductive bias 是藉由先驗知識或普通常識來對模型做額外的假設,增加對未曾見過的測試例子的準確度,並能使用更少的實例來做訓練。常見的引入 inductive bias 是藉由多任務訓練,來迫使演算法偏好找尋能同時解釋多個任務的模型參數。

最後,為了改善 Attention 機制,也可引入 Inductive bias

展望 2019

2019,PwC 認為是 AIaaS (Artificial Intelligence as a Service) 技術成熟並進入商業運轉的一年。PwC 在今年的趨勢預測文章中,為已挹注資金研發 AIaaS 的公司,提出了六條優先自我檢查的項目。

這六個項目,分別簡述如下:

組織重構以確保明確的人工智慧商業策略(Structure: Organize for ROI and momentum):在此項中,PwC 建議擁有單一的資訊平台以整合不同 AI 團隊的努力,並專注於打造可跨不同組織,並可重複利用的 AI 解決方案。

建立一個同時能讓人工智慧專家和非專家共同合作的團隊(Workforce: Teach AI citizens and specialists to work together):此項中,則延續去年的人工智慧平民化(democratizing AI),鑑於許多自動化人工智慧模型訓練的演算法興起,如 AutoML。

一個混合型的團隊,包括關注人工智慧產品介面使用者(citizen users),具有商業背景能解析 AI 結果的開發者(citizen developers)和真正的人工智慧專家,如資料科學家(specialists)等。藉由適當分工,緊密合作,驅動 AIaaS 順利運轉。

專注於人工智慧模型透明化(Trust: Make AI responsible in all its dimensions):在此項中,延續了 2018 關於 Explainable AI 的預測,但增加了人工智慧應用的道德限制,包括了:如何移除資料中的偏差,如何確保人工智慧模型的安全性等等。

如何正確且合法的取得個人資料做模型訓練(Data: Locate and label to teach the machines):如何取得與欲解決的商業問題相關的訓練資料,或運用遷移學習(transfer learning)等現有已訓練模型,迴避手動標注大量資料的問題。

而在 2018 年分別在歐美二地通過的 GDPRCCPA,將會對資料的取得方法做更嚴格的規範。

專注於個人化與高品質的人工智慧產品(Reinvention: Monetize AI through personalization and higher quality):此項中包括使用人工智慧模型作為決策系統,以及藉由發展個人客製化的商業模式找到市場。

合併人工智慧於不同的技術中(Convergence: Combine AI with analytics, the IoT, and more):許多傳統產業將需要人工智慧來為第四次工業革命做轉型準備。包括了 IoT(物聯網),以及透過物聯網產生的新型資料的分析。最後藉由 DevOpsAIaaS 提供不間斷最佳的服務品質。

有了 PwC 六項建議,接下來我們針對快速發展的 Automate Data Science & AutoML 領域,來勾勒 2019 年的簡要藍圖。

Automate Data Science & AutoML

“Python Machine Learning” 一書作者,Sebastian Raschka 曾說

電腦程式是關於如何自動化,而機械學習則是關於如何自動自動化。(“computer programming is about automation, and machine learning is "all about automating automation.”)

然而,因為調整模型的過程繁複瑣碎,而使自動化機械學習,亦簡稱為 AutoML,成為一門學習自動化的學問 ("the automation of automating automation."),而該學問的最終成果便是發展一個能夠自行最佳化學習過程的演算法。

最後,以一張圖來總結目前 AutoML 領域中所面臨的困難。這些困難包括了將 AutoML 應用到 online-training 的模型和資料型態的多變異性。

raw-image

註釋:

[1] 見 Google CEO Sundar Pichai 在 Google I/O 2018 keynote 演講

延伸閱讀:

  1. KDNuggets “The Data Science Process, Rediscovered” (英): 2016 年的文章主要定義不同的資料科學流程。
  2. KDNuggets ”Building AI to Build AI: The Project That Won the NeurIPS AutoML Challenge“ (英): 由 2018 年 NeurIPs AutoML 競賽中獲獎的隊伍,Flytxt ,提到目前 AutoML 所面臨的挑戰和困難。
以行動支持創作者!付費即可解鎖
本篇內容共 11414 字、0 則留言,僅發佈於翻滾吧!駭客女孩!你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
Rene Wang的沙龍
70會員
35內容數
<p>專為年輕的女孩設計的科學/資訊科技寫作計畫,希望讓每位女孩在體脂肪、青春痘與暗戀對象之外,還能找到新的生活樂趣。</p>
Rene Wang的沙龍的其他內容
2021/03/19
一個好的自然語言模型,若出現了語言模型的 vocabulary set 未曾收錄的單字,語言模型就會產生 Out-of-Vocabulary (OOV)。 本文介紹 subword algorithms 介於 word-level 和 character-level 解決 OOV 的方法。
Thumbnail
2021/03/19
一個好的自然語言模型,若出現了語言模型的 vocabulary set 未曾收錄的單字,語言模型就會產生 Out-of-Vocabulary (OOV)。 本文介紹 subword algorithms 介於 word-level 和 character-level 解決 OOV 的方法。
Thumbnail
2021/02/26
本篇文章前半段先對網路裁減做簡單介紹,後半段針對彩卷假說作文獻式的探討。網路裁減是一種重新發現等價小網路的方法,主要目的在為 over-parameterized 的方式訓練而成的類神經網路提供一個精簡版的網路,有助於在資源受限的平台上運行。彩卷假說則是探討權重初始值和網路裁減之間的關係。
Thumbnail
2021/02/26
本篇文章前半段先對網路裁減做簡單介紹,後半段針對彩卷假說作文獻式的探討。網路裁減是一種重新發現等價小網路的方法,主要目的在為 over-parameterized 的方式訓練而成的類神經網路提供一個精簡版的網路,有助於在資源受限的平台上運行。彩卷假說則是探討權重初始值和網路裁減之間的關係。
Thumbnail
2021/01/08
多任務學習指的是使用多個相關的任務目標(Multiple objectives)來學習共享的表示方法。在這篇文章中,我們會介紹 google 的 youtube recommender 系統就是利用 Multi-gate Mixture of Experts 來達成多目標多任務學習的方式。
Thumbnail
2021/01/08
多任務學習指的是使用多個相關的任務目標(Multiple objectives)來學習共享的表示方法。在這篇文章中,我們會介紹 google 的 youtube recommender 系統就是利用 Multi-gate Mixture of Experts 來達成多目標多任務學習的方式。
Thumbnail
看更多
你可能也想看
Thumbnail
目錄 • 前言 • AI 揭曉 • AI 的光明面 • AI 的陰暗面 • 道德困境 • 風險管理 • 總結 前言 人工智慧是人工智慧的縮寫,是這個街區的新孩子。它有可能顛覆行業,讓我們的生活變得輕而易舉。但這並不全是陽光和彩虹。隨之而來的是一些嚴重的問題,如失業、道德困境和隱私問題。在
Thumbnail
目錄 • 前言 • AI 揭曉 • AI 的光明面 • AI 的陰暗面 • 道德困境 • 風險管理 • 總結 前言 人工智慧是人工智慧的縮寫,是這個街區的新孩子。它有可能顛覆行業,讓我們的生活變得輕而易舉。但這並不全是陽光和彩虹。隨之而來的是一些嚴重的問題,如失業、道德困境和隱私問題。在
Thumbnail
目錄 • 前言 • 日常生活中的人工智慧 • 人工智慧:終極問題解決者 • 道德考慮 • 未來的可能性 • 結論 前言 人工智慧(AI)已成為日常生活任務中不可或缺的一部分,更輕鬆,更方便。與人類同行不同,它是可用的。人工智慧存在於虛擬助手、智慧家居、醫療保健、交通、娛樂、購物、社交媒體、金融和欺詐
Thumbnail
目錄 • 前言 • 日常生活中的人工智慧 • 人工智慧:終極問題解決者 • 道德考慮 • 未來的可能性 • 結論 前言 人工智慧(AI)已成為日常生活任務中不可或缺的一部分,更輕鬆,更方便。與人類同行不同,它是可用的。人工智慧存在於虛擬助手、智慧家居、醫療保健、交通、娛樂、購物、社交媒體、金融和欺詐
Thumbnail
我們這個系列就是希望以非常科普的角度來解釋人工智慧。本篇要釐清人工智慧(AI: Artificial Intelligence),機器學習 Machine Learning, 深度學習Deep Learning,另外還有類神經網路,到底互相是什麼關係呢?
Thumbnail
我們這個系列就是希望以非常科普的角度來解釋人工智慧。本篇要釐清人工智慧(AI: Artificial Intelligence),機器學習 Machine Learning, 深度學習Deep Learning,另外還有類神經網路,到底互相是什麼關係呢?
Thumbnail
這是一本講述人工智慧的發展,以及企業在導入人工智慧會遇到的困境,和擁抱人工智慧所需要具備的條件,給身在台灣的各位一個思考的方向,是一本很值得一讀的書。
Thumbnail
這是一本講述人工智慧的發展,以及企業在導入人工智慧會遇到的困境,和擁抱人工智慧所需要具備的條件,給身在台灣的各位一個思考的方向,是一本很值得一讀的書。
Thumbnail
麻省理工學院史隆管理學院首席研究科學家,安德魯.麥克費在這篇2017年發表的文章中,說明了人工智慧對於組織與企業來說,能做到、不能做到什麼,以及帶來哪些新的風險與機會?
Thumbnail
麻省理工學院史隆管理學院首席研究科學家,安德魯.麥克費在這篇2017年發表的文章中,說明了人工智慧對於組織與企業來說,能做到、不能做到什麼,以及帶來哪些新的風險與機會?
Thumbnail
人工智能是研究如何通過智能的硬件和軟件來完成通常需要人類智慧才能完成的任務。
Thumbnail
人工智能是研究如何通過智能的硬件和軟件來完成通常需要人類智慧才能完成的任務。
Thumbnail
AI雖然現在還在萌芽期,不時有一些新鮮的技術出來,但多半面臨真實世界的考驗時,不是實用程度不夠,就是有道德問題。Andrew這次提到的跟前陣子的「明星換臉」就是類似的問題。不過從以前的工業革命,網路革命到現在的AI革命,哪一次沒有伴隨道德問題出來呢?這也是科技最有趣的地方…
Thumbnail
AI雖然現在還在萌芽期,不時有一些新鮮的技術出來,但多半面臨真實世界的考驗時,不是實用程度不夠,就是有道德問題。Andrew這次提到的跟前陣子的「明星換臉」就是類似的問題。不過從以前的工業革命,網路革命到現在的AI革命,哪一次沒有伴隨道德問題出來呢?這也是科技最有趣的地方…
Thumbnail
「今天Dcard和PTT的熱門你看了嗎」「目的地好遠喔,我們叫個Uber過去吧」,不知不覺中我們的生活已經充斥了各種新的科技服務,在台灣這座科技島上的我們永遠都不會缺乏對新科技的新聞媒體報導,而近年又以「AI」作為關鍵字加強報導,但這其中又有多少是「真」AI,實際上又能做到多少事情呢?
Thumbnail
「今天Dcard和PTT的熱門你看了嗎」「目的地好遠喔,我們叫個Uber過去吧」,不知不覺中我們的生活已經充斥了各種新的科技服務,在台灣這座科技島上的我們永遠都不會缺乏對新科技的新聞媒體報導,而近年又以「AI」作為關鍵字加強報導,但這其中又有多少是「真」AI,實際上又能做到多少事情呢?
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News