最佳化演算法

含有「最佳化演算法」共 3 篇內容
全部內容
發佈日期由新至舊
獲得2023年STOC研討會的最佳論文獎的密碼學研究,找到了資訊加密安全性與運算效率的理論最佳解,這將如何影響隱私權保護?
Thumbnail
連同上兩篇文章,我們介紹了機械學習裡的基石,並踩著這些基石了解了改變資料餵送方式,以及動態改變學習率或在更新項中加入動量的方法。我們可以看到這些梯度下降的變化,主要是解決兩個問題:梯度震盪和非最佳的局部最小值造成學習停滯不前的問題。在這篇文章中,我們著重動量和 Adam 的方法來達成克服以上的問題。
Thumbnail
我們將會對動態設定學習率(learning rate)作為最陡梯度下降法的變異演算法做介紹。內容包括了解釋什麼事循環式的學習率調整排程法和何謂使用指數衰退權重來計算移動平均值,同時也介紹如何對大量參數的變數進行最佳化和目前活躍的演算法變異。如 adagrad, adadelta 和 RMSprop
Thumbnail