梯度下降學習法

含有「梯度下降學習法」共 1 篇內容
全部內容
發佈日期由新至舊
感知器  (perceptron) 利用逐一探訪訓練資料,以更多的訓練例子被正確的分類為目標,來更新任意初始的權重。然而該方法難以延伸到非線性的分類平面,所以以梯度為主的最佳化演算法取而代之,並發展出更多的應用。在本篇中,除了介紹梯度下降法外,亦會討論如何利用學習曲線圖診斷一個機械模型,並對症下藥。
Thumbnail