如果比較三年期的定期存款與coupon rate為5%的債券,且假設所有的條件都相同,則三年後所獲得的利息收入確實可以是相同的。
1. 定期存款5%
- 假設你存入100元於定期存款,年利率為5%,且利息每年結算並重新投入(復利計算)。
- 第一年結束後,你的存款增至 100×(1+0.05)=105100 \times (1 + 0.05) = 105100×(1+0.05)=105 元。
- 第二年結束後,你的存款增至 105×(1+0.05)≈110.25105 \times (1 + 0.05) \approx 110.25105×(1+0.05)≈110.25 元。
- 第三年結束後,你的存款增至 110.25×(1+0.05)≈115.76110.25 \times (1 + 0.05) \approx 115.76110.25×(1+0.05)≈115.76 元。
2. Coupon Rate為5%的債券
- 假設你以100元購買債券,每年支付5%的coupon,即每年支付5元。
- 第一年末你收到5元。
- 第二年末你再收到5元。
- 第三年末你再收到5元,並在債券到期時返還本金100元。
如果將每年的5元coupon重新以固定5%的利率投資:
- 第一年的5元,再投資兩年,總值 5×(1+0.05)2≈5.515 \times (1 + 0.05)^2 \approx 5.515×(1+0.05)2≈5.51 元。
- 第二年的5元,再投資一年,總值 5×(1+0.05)=5.255 \times (1 + 0.05) = 5.255×(1+0.05)=5.25 元。
- 第三年的5元,到期時值5元。
三年後的總收入將是 5.51+5.25+5+100=115.765.51 + 5.25 + 5 + 100 = 115.765.51+5.25+5+100=115.76 元。
結論
在以上的理想化條件下(即利息可以以相同的年利率再投資),兩者三年後的總收入是相同的。然而,這個結果極度依賴於利息再投資的利率能與原投資的利率相同,這在現實中可能難以實現,尤其是債券的部分,市場利率波動可能會導致再投資的實際收益率與原計劃不同。