高一下, 數列

更新於 發佈於 閱讀時間約 1 分鐘
數列範例多選題
題目拆解分析(a)
題目拆解分析(b)
題目拆解分析(c)
代入法求解
一般項求解法(a)
一般項求解法(b)
一般項歸納思考
avatar-img
0會員
7內容數
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
小民的沙龍 的其他內容
一元二次方程式配方法推導過程
「什麼時候才能用數學歸納法?」 數學歸納法的哲學意義是,當1代入時關係成立,且n成立時發現n+1時成立,那豈不是1成立2就成立,接著3也成立,因此到∞也成立? 所有數學歸納法適用的時機是: 1. 該命題要證明的範圍在自然數系中 2. 能透過「被歸納的訊息」找到「n和n+1 or n和n-1的關係」
要觀察一個數值的集合有很多方法,透過這些方法得出數值集合的某些特徵,可以讓我們除了「感覺」外,能有更「理性客觀」的方式來理解這個數值集合的特徵。 眾數:一個集合中出現最多次的那個元素,以此作為一個集合的代表性特徵算是很直覺的作法。但缺點是,以眾數作為一個集合的標籤,我們無法透過眾數得知
一元二次方程式配方法推導過程
「什麼時候才能用數學歸納法?」 數學歸納法的哲學意義是,當1代入時關係成立,且n成立時發現n+1時成立,那豈不是1成立2就成立,接著3也成立,因此到∞也成立? 所有數學歸納法適用的時機是: 1. 該命題要證明的範圍在自然數系中 2. 能透過「被歸納的訊息」找到「n和n+1 or n和n-1的關係」
要觀察一個數值的集合有很多方法,透過這些方法得出數值集合的某些特徵,可以讓我們除了「感覺」外,能有更「理性客觀」的方式來理解這個數值集合的特徵。 眾數:一個集合中出現最多次的那個元素,以此作為一個集合的代表性特徵算是很直覺的作法。但缺點是,以眾數作為一個集合的標籤,我們無法透過眾數得知
你可能也想看
Google News 追蹤
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
國中數學第三冊 第一單元 乘法公式與多項式 1-2 多項式與其加減 例題解說
Thumbnail
題目敘述 輸入給定一個鏈結串列,整體看代表一個十進位的數字,各別看每個節點代表每個digit,分別從最高位~最低位個位數。 要求我們把原本的數字乘以二,並且以鏈結串列的形式返回答案。 原本的英文題目敘述
Thumbnail
這篇文章,會帶著大家複習以前學過的數列DP框架, 並且以費式數列、爬樓梯、骨牌拚接的應用與遞迴數列概念為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 數列DP與遞迴數列常見的形式 如果是遞迴數列,常常看到以函數型式表達
Thumbnail
高中數學主題練習—求等差數列某項與等差級數
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
國中數學第三冊 第一單元 乘法公式與多項式 1-2 多項式與其加減 例題解說
Thumbnail
題目敘述 輸入給定一個鏈結串列,整體看代表一個十進位的數字,各別看每個節點代表每個digit,分別從最高位~最低位個位數。 要求我們把原本的數字乘以二,並且以鏈結串列的形式返回答案。 原本的英文題目敘述
Thumbnail
這篇文章,會帶著大家複習以前學過的數列DP框架, 並且以費式數列、爬樓梯、骨牌拚接的應用與遞迴數列概念為核心, 貫穿一些相關聯的題目,透過框架複現來幫助讀者理解這個演算法框架。 數列DP與遞迴數列常見的形式 如果是遞迴數列,常常看到以函數型式表達
Thumbnail
高中數學主題練習—求等差數列某項與等差級數