高一下, 統計2

閱讀時間約 3 分鐘
在統計1中, 我們討論了如何觀察一個數值的集合, 擁有諸如「眾數」, 「中位數」, 「算術平均數」和標準差等工具. 那麼, 如果我們想要觀察和瞭解2個數值集合之間的關係呢?
先來討論一個觀念:「標準化」
在我們試著做「比較」時, 往往需要訂立一個比較的「標準」, 這就是標準化的由來. 而標準化往往透過的手段是「除法」.
舉個例子, 今天有個美國人A和一個台灣人B想要比較看看誰比較優秀. 而他們想到的比較方式是各自的年薪.這時候, 由於美國和台灣的薪資水平顯然有著巨大的差異, 一個美國普通人的收入, 往往就輾壓了大部份台灣人(包含台灣菁英)的收入. 直接比較他們各自的年薪然後說這個美國人比台灣人優秀顯然是不合適的. 所以我們可以拿「美國人A的年薪/美國人的平均國民所得」和「台灣人B的年薪/台灣人的平均所得」來比較, 也就是以他們各自所在群體的「算術平均數」當作標準, 透過這樣的「標準化」, 若最後得出「美國人A的年薪/美國人的平均國民所得」=1.5, 而「台灣人B的年薪/台灣人的平均所得」=2, 那麼我們就可以說在這樣的定義上, 這位台灣人B很可能比這位美國人A優秀.
這樣的推論是有前提的, 前提是認為「一般來說, 美國人和台灣人都是人類, 大約是一般聰明和優秀的, 美國人的頂級菁英和台灣人的頂級菁英一樣優秀, 美國人最弱勢的人群也和台灣最弱勢的人群素質接近」, 這樣一來, 透過各自國家的年均所得來當作標準, 所得到的標準化的結果, 會發現那位美國人A的優秀程度大約是1.5個美國人的平均, 而那位台灣人B則是大約2倍於台灣的一般人. 因此判定這位台灣人相對優秀一些.
那麼, 如果我們知道兩個數值集合的「算術平均數」和「標準差」, 能不能定義一種標準化的方式, 讓我們能更客觀的比較這兩個數值集合, 甚至得知這兩個數值集合的(線性)變化關聯性呢?
以標準差為單位的標準化:
前一篇統計1中有提到一個觀念, 其實標準差可以視為一個數值集合中的所有元素到其算術平均數之間的平均距離.
以標準差為底的標準化
證明標準化後平均值為0, 標準差為1
相關係數
相關係數r的定義
數據標準化後相關係數不變
這樣定義相關係數的好處是甚麼?可以幫助我們藉此提取出甚麼客觀資訊?
  1. 相關係數r的範圍有界, 必然介於-1和1之間
證明1「相關係數r必然介於-1和1之間」
證明2「相關係數r必然介於-1和1之間」
2. 當 r 為 1 時,表示兩個變數之間有完全正向線性相關;當 r 為 -1 時,表示兩個變數之間有完全負向線性相關;當 r 為 0 時,表示兩個變數之間沒有線性相關關係。
.相關係數r能表達出相關性的方向,當兩個變數為「正相關」時,此相關係數的數值為正,反之則為負。
.相關係數r能表達出兩變數線性相關的程度。當x變量變大時,y變量有變大或變小的趨勢較強時,兩變量的相關強度較強,此時,相關係數的絕對值也較大。
需要注意的是,當兩個變量的相關係數越接近0,並不一定意味著它們之間沒有任何關係。它們可能存在其他類型的關係,例如非線性關係或時間延遲關係等,這些關係可能需要使用其他方法來進行建模和分析。相關係數只能反映線性相關程度,而不能反映變量之間的其他類型的關係。因此,在分析和建模中,需要根據具體情況選擇適當的方法和技術。
3. 相關係數r與一變數所使用的量測單位無關✩
例如測量身高與體重的相關性時,不論身高的單位是用公分或吋,體重的單位是用公斤或磅,所得的相關係數應相同。
標準化的結果並不因線性關係而變化
4. 標準化資料Y對X的最佳(迴歸)直線L為Y=rX
y對x的最佳直線公式
0會員
7內容數
留言0
查看全部
發表第一個留言支持創作者!
小民的沙龍 的其他內容
複利的計算過程
高一下數列的代入求解法和一般項求解法
一元二次方程式配方法推導過程
「什麼時候才能用數學歸納法?」 數學歸納法的哲學意義是,當1代入時關係成立,且n成立時發現n+1時成立,那豈不是1成立2就成立,接著3也成立,因此到∞也成立? 所有數學歸納法適用的時機是: 1. 該命題要證明的範圍在自然數系中 2. 能透過「被歸納的訊息」找到「n和n+1 or n和n-1的關係」
要觀察一個數值的集合有很多方法,透過這些方法得出數值集合的某些特徵,可以讓我們除了「感覺」外,能有更「理性客觀」的方式來理解這個數值集合的特徵。 眾數:一個集合中出現最多次的那個元素,以此作為一個集合的代表性特徵算是很直覺的作法。但缺點是,以眾數作為一個集合的標籤,我們無法透過眾數得知
複利的計算過程
高一下數列的代入求解法和一般項求解法
一元二次方程式配方法推導過程
「什麼時候才能用數學歸納法?」 數學歸納法的哲學意義是,當1代入時關係成立,且n成立時發現n+1時成立,那豈不是1成立2就成立,接著3也成立,因此到∞也成立? 所有數學歸納法適用的時機是: 1. 該命題要證明的範圍在自然數系中 2. 能透過「被歸納的訊息」找到「n和n+1 or n和n-1的關係」
要觀察一個數值的集合有很多方法,透過這些方法得出數值集合的某些特徵,可以讓我們除了「感覺」外,能有更「理性客觀」的方式來理解這個數值集合的特徵。 眾數:一個集合中出現最多次的那個元素,以此作為一個集合的代表性特徵算是很直覺的作法。但缺點是,以眾數作為一個集合的標籤,我們無法透過眾數得知
你可能也想看
Google News 追蹤
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
Faker昨天真的太扯了,中國主播王多多點評的話更是精妙,分享給各位 王多多的點評 「Faker是我們的處境,他是LPL永遠繞不開的一個人和話題,所以我們特別渴望在決賽跟他相遇,去直面我們的處境。 我們曾經稱他為最高的山,最長的河,以為山海就是盡頭,可是Faker用他28歲的年齡...
Thumbnail
《高級中等以下學校教師解聘不續聘停聘或資遣辦法》重點整理[下]
Thumbnail
《高級中等以下學校教師解聘不續聘停聘或資遣辦法》重點整理[上]
Thumbnail
自從養成使用手機日曆的習慣,開始會注意到那些沒放假,卻還膽敢標記給你看的節日。一個不小心得知今天是重陽節。聽朋友說,重陽節就是要登高啊,不然要幹嘛?雖然不懂來由是什麼,但就讓我跟各位分享一個登高的北歐神話吧。
Thumbnail
殖利率為什麼特別高? 投資小白艾莉,一位對於數字不太擅長的年輕人,投資股票就是靠感覺,一種不知道從何而來的自信,今天一大早又來問教授... 艾莉:教授,興富發好多群組在推,還有許多專屬的臉書社團,這一檔可以投資嗎? 教授:投資這一檔股票的朋友,大多數都是覺得配息大方、殖利率不錯,很多年的殖利率都在1
Thumbnail
這週美股如預期的上漲,也在利率會議後如預期的下跌,那到底是上漲結束了嗎?就讓我們一起夢下去的啦!
Thumbnail
美股,股票,股市,高股息,個股,ETF,估價,股利,股息,配息,殖利率,理財,投資,存股,合理價,stock,DIV,SPIP,PFFD,SCHP,PSK,PFFV,TIP,TDTT,TIPZ,VTIP,PFXF,PGX,FGD,PGF,PFF,EPRF,TIPX,VIDI,PQDI,CID,債劵
Thumbnail
對於這樣的長期投資者來說,配息可能不是好事,因為股息是自己的錢,配息只是一種左手換右手的概念。如果你真的需要將股息提領,那麼你需要扣稅和二代健保費用,而這也會影響你的長期複利效應。因此,不配息是省錢且長期賺更多的做法。呼籲發行商推出不配息的產品,以滿足長期投資者的需求。
Thumbnail
篩選方式:2022年前三季每股盈餘較前一年度成長,10年平均現金股息殖利率達4.5%以上。
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
Faker昨天真的太扯了,中國主播王多多點評的話更是精妙,分享給各位 王多多的點評 「Faker是我們的處境,他是LPL永遠繞不開的一個人和話題,所以我們特別渴望在決賽跟他相遇,去直面我們的處境。 我們曾經稱他為最高的山,最長的河,以為山海就是盡頭,可是Faker用他28歲的年齡...
Thumbnail
《高級中等以下學校教師解聘不續聘停聘或資遣辦法》重點整理[下]
Thumbnail
《高級中等以下學校教師解聘不續聘停聘或資遣辦法》重點整理[上]
Thumbnail
自從養成使用手機日曆的習慣,開始會注意到那些沒放假,卻還膽敢標記給你看的節日。一個不小心得知今天是重陽節。聽朋友說,重陽節就是要登高啊,不然要幹嘛?雖然不懂來由是什麼,但就讓我跟各位分享一個登高的北歐神話吧。
Thumbnail
殖利率為什麼特別高? 投資小白艾莉,一位對於數字不太擅長的年輕人,投資股票就是靠感覺,一種不知道從何而來的自信,今天一大早又來問教授... 艾莉:教授,興富發好多群組在推,還有許多專屬的臉書社團,這一檔可以投資嗎? 教授:投資這一檔股票的朋友,大多數都是覺得配息大方、殖利率不錯,很多年的殖利率都在1
Thumbnail
這週美股如預期的上漲,也在利率會議後如預期的下跌,那到底是上漲結束了嗎?就讓我們一起夢下去的啦!
Thumbnail
美股,股票,股市,高股息,個股,ETF,估價,股利,股息,配息,殖利率,理財,投資,存股,合理價,stock,DIV,SPIP,PFFD,SCHP,PSK,PFFV,TIP,TDTT,TIPZ,VTIP,PFXF,PGX,FGD,PGF,PFF,EPRF,TIPX,VIDI,PQDI,CID,債劵
Thumbnail
對於這樣的長期投資者來說,配息可能不是好事,因為股息是自己的錢,配息只是一種左手換右手的概念。如果你真的需要將股息提領,那麼你需要扣稅和二代健保費用,而這也會影響你的長期複利效應。因此,不配息是省錢且長期賺更多的做法。呼籲發行商推出不配息的產品,以滿足長期投資者的需求。
Thumbnail
篩選方式:2022年前三季每股盈餘較前一年度成長,10年平均現金股息殖利率達4.5%以上。