付費限定緊湊型神經網路壓縮技術 for NeRF by Nvidia Takikawa et al.
付費限定

緊湊型神經網路壓縮技術 for NeRF by Nvidia Takikawa et al.

更新於 發佈於 閱讀時間約 7 分鐘

隨著生成式AI與NeRF技術的崛起,會有越來越多的圖像與3D內容有快速讀取與容量壓縮的需求,這篇文章提出了一個很好的解法,同時,論文也向我們展示了神經網路壓縮技術的設計思路,值得我們借鑒與應用在其他場合,我將嘗試為大家進行深入解析。


論文架構解析:

藉由兩個不同的Hash,將Vertices均勻對應到 Indexing / Feature codebook上面,藉由倒傳遞收斂來決定Feature Codebook內需要存放的關鍵訊息,也能藉由倒傳遞決定Np Indexing的位置,傳統的做法沒有Indexing這個部分,即Np=1,好處是所需要的容量較低,但會導致Hash容易發生碰撞衝突,即兩個相差比較遠的Feature,會撞一起,降低了壓縮模型的表達能力,導致無法精進壓縮率。

本文嘗試使用Np Probing 索引,付出一些代價以進一步精進壓縮比例,下圖中Nc維度由Hash2直接定址,Np維度由神經網路去學,取最大值來當作定址目標,倒傳遞收斂的時候使用Softmax輸出,然後Nf維度藉由Hash 和 Np定址結果,共同決定。

raw-image


我會認為Index Probing Range Np 是本篇論文最重要的參數, 可以促進人工智慧去重新定址,做Clustering並且抽取特徵,保留這個彈性,可以解決Hash強碰的問題,能大大的利用神經網路學習的優勢,缺點是增加所需容量的低銷,不過能換到的好處更多。

raw-image


參數越多壓縮比例越差,但是PSNR保真度越好,這裡提供各種參數方便使用者壓縮的時候調控品質與壓縮比例之間的互換,相信Compact NGP會是目前最佳的3D生成模型如NeRF的最佳夥伴,也會是大型3D全視角VR的首選,另外,本文的壓縮方法對於8K圖片也有很大的壓縮率斬獲,期待本篇作者能持續的精進改良。

raw-image
以行動支持創作者!付費即可解鎖
本篇內容共 2868 字、0 則留言,僅發佈於人工智慧宇宙你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
無限智慧學院的沙龍
95會員
128內容數
帶你用上帝視角,針對市面上具有高度價值的影片/論文/書籍,用東方取象,與西方邏輯辯證的角度同時出發,跟著我一起來探討宇宙萬事萬物的本質,隨時隨地都可以來一場說走就走的思維旅行。作者在台積電 / 聯發科等科技產業有累計10年的資歷,近期對於人工智慧,東方易經,西方辯證邏輯,還有佛法向內求有深度興趣。
留言
avatar-img
留言分享你的想法!
這次要介紹的這篇,使用Mask-LM的生成方式,可以達到最頂尖的FID/FVD分數,取得超越Diffusion Model的生成品質,並兼顧了生成速度,讓我們一起從MAGVIT開始,逐步理解到MAGVIT-V2,相信能讓對於最新影像生成領域有興趣的讀者,感到收穫滿滿。
對於天氣的精密掌握,不僅得以改善各種生存條件,還能藉此訂定各種軍事策略,對於各種地緣政治紛爭的此刻,有其重大意義,於是各國對於快速準確的天氣預測技術,皆十分有興趣。本文介紹Google Research 的研究利用AI來預測天氣,誤差可以勝過傳統超級計算機的估算,讓我們一起看看是怎麼做到的。
Google Research 在2024年給出了令人滿意的新年禮物,這篇論文內的方法,若持續發展下去,可望顛覆整個影音創作產業,未來製作生動的影音動畫,不再是令人頭痛與耗費心力的一件事情,是不是很酷,讓我們一起看看到底是如何做到的。
這次要介紹的這篇,使用Mask-LM的生成方式,可以達到最頂尖的FID/FVD分數,取得超越Diffusion Model的生成品質,並兼顧了生成速度,讓我們一起從MAGVIT開始,逐步理解到MAGVIT-V2,相信能讓對於最新影像生成領域有興趣的讀者,感到收穫滿滿。
對於天氣的精密掌握,不僅得以改善各種生存條件,還能藉此訂定各種軍事策略,對於各種地緣政治紛爭的此刻,有其重大意義,於是各國對於快速準確的天氣預測技術,皆十分有興趣。本文介紹Google Research 的研究利用AI來預測天氣,誤差可以勝過傳統超級計算機的估算,讓我們一起看看是怎麼做到的。
Google Research 在2024年給出了令人滿意的新年禮物,這篇論文內的方法,若持續發展下去,可望顛覆整個影音創作產業,未來製作生動的影音動畫,不再是令人頭痛與耗費心力的一件事情,是不是很酷,讓我們一起看看到底是如何做到的。