付費限定

快速準確AI預測全球天氣 with GraphCast by Google Research Lam et al.

更新 發佈閱讀 6 分鐘

在三國演義中,赤壁之戰,諸葛亮憑藉對湖陸風向的預測,火燒連環船,使得孫劉聯軍得以大敗曹操,奠定三國鼎立的基礎。由此可見,對於天氣的精密掌握,不僅得以改善各種生存條件,還能藉此訂定各種軍事策略,對於各種地緣政治紛爭的此刻,有其重大意義,於是各國對於快速準確的天氣預測技術,皆十分有興趣。

Google Research於2023年11月,在自然(Nature)雜誌上,發表了能夠快速且準確預測全球天氣的人工智慧模型,採用自回歸(self-Regression),如同GPT那樣進行逐步推演,可以預測到10天後,比歐洲中期天氣預報中心(ECMWF)用超級計算機計算的高解析HRES方法,預測的還要準確。預測的項目包含溫度,風速,壓力,濕度,等等。開源程式碼python Jax 寫成,Jax套件由Google開發,可對神經網路運算進行加速優化。


論文主要架構:

使用Graph Neuron Network,如下圖所示,每一個Mesh point的Embedding,皆由鄰近的地理天氣數據經過MLP(Multiple Layer Perceptron)編碼產生,此過程被論文稱為Grid-to-Mesh。緊接著,使用MLP採樣如下圖所示M0~M6的Mesh points產生更進一步的Embeddings,此過程被論文稱為Mesh-to-Mesh。最後解回來僅參考鄰近的三個Mesh,輸入皆為上一步產生的,更進一步的Embeddings,經由MLP傳導至輸出,此過程被論文稱為Mesh-to-Grid,這裡的構造設計充分利用資料的空間相關性

自回歸的方式逐步預測全球天氣,利用Grid-Mesh-Grid的資料結構準換,搭建MLP神經網路,用於準確預測全球天氣

自回歸的方式逐步預測全球天氣,利用Grid-Mesh-Grid的資料結構準換,搭建MLP神經網路,用於準確預測全球天氣


時間相關性部分,GraphCast使用相鄰的一個時間來推斷,輸入總共是兩筆時間的Data,後續的預測輸入拿先前的輸出結果來做預測,這就是俗稱自回歸的過程,也是目前GPT文字接龍使用的方式,作者發現取鄰近兩個時間的資料,效果比單一時間還好,取兩個以上的部分,效果並沒有改善很多,相比於Memory使用量的開銷來說。

raw-image


以行動支持創作者!付費即可解鎖
本篇內容共 2702 字、0 則留言,僅發佈於人工智慧宇宙你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
無限智慧學院的沙龍
95會員
128內容數
帶你用上帝視角,針對市面上具有高度價值的影片/論文/書籍,用東方取象,與西方邏輯辯證的角度同時出發,跟著我一起來探討宇宙萬事萬物的本質,隨時隨地都可以來一場說走就走的思維旅行。作者在台積電 / 聯發科等科技產業有累計10年的資歷,近期對於人工智慧,東方易經,西方辯證邏輯,還有佛法向內求有深度興趣。
2024/02/28
這次要介紹的這篇,使用Mask-LM的生成方式,可以達到最頂尖的FID/FVD分數,取得超越Diffusion Model的生成品質,並兼顧了生成速度,讓我們一起從MAGVIT開始,逐步理解到MAGVIT-V2,相信能讓對於最新影像生成領域有興趣的讀者,感到收穫滿滿。
Thumbnail
2024/02/28
這次要介紹的這篇,使用Mask-LM的生成方式,可以達到最頂尖的FID/FVD分數,取得超越Diffusion Model的生成品質,並兼顧了生成速度,讓我們一起從MAGVIT開始,逐步理解到MAGVIT-V2,相信能讓對於最新影像生成領域有興趣的讀者,感到收穫滿滿。
Thumbnail
2024/02/10
隨著生成式AI不斷的推陳出新,對於能有效壓縮這些豐富且大量內容的技術,變得至關重要,影響著傳輸速度與執行速度,本文的壓縮架構,能夠有效地做成專用IC,在同樣的畫質水準下,甚至能夠達成JPEG 1/3的壓縮後容量,此方法可應用在各種3D NeRF生成作品上面,各種VR與3D生成技術都必然會用到。
Thumbnail
2024/02/10
隨著生成式AI不斷的推陳出新,對於能有效壓縮這些豐富且大量內容的技術,變得至關重要,影響著傳輸速度與執行速度,本文的壓縮架構,能夠有效地做成專用IC,在同樣的畫質水準下,甚至能夠達成JPEG 1/3的壓縮後容量,此方法可應用在各種3D NeRF生成作品上面,各種VR與3D生成技術都必然會用到。
Thumbnail
2024/02/04
Google Research 在2024年給出了令人滿意的新年禮物,這篇論文內的方法,若持續發展下去,可望顛覆整個影音創作產業,未來製作生動的影音動畫,不再是令人頭痛與耗費心力的一件事情,是不是很酷,讓我們一起看看到底是如何做到的。
Thumbnail
2024/02/04
Google Research 在2024年給出了令人滿意的新年禮物,這篇論文內的方法,若持續發展下去,可望顛覆整個影音創作產業,未來製作生動的影音動畫,不再是令人頭痛與耗費心力的一件事情,是不是很酷,讓我們一起看看到底是如何做到的。
Thumbnail
看更多
你可能也想看
Thumbnail
SearchGPT 是由 OpenAI 開發的 AI 驅動搜尋引擎,結合了傳統搜尋引擎技術和最新的 AI 技術,能即時從互聯網獲取資訊。它與其他搜尋引擎相比,提供更相關的搜尋結果、更豐富的結果呈現、更快的速度和更好的生態合作基礎建設。
Thumbnail
SearchGPT 是由 OpenAI 開發的 AI 驅動搜尋引擎,結合了傳統搜尋引擎技術和最新的 AI 技術,能即時從互聯網獲取資訊。它與其他搜尋引擎相比,提供更相關的搜尋結果、更豐富的結果呈現、更快的速度和更好的生態合作基礎建設。
Thumbnail
數據分析與解讀 隨著數據的爆炸式增長,能夠分析、解讀和應用數據的能力變得至關重要。這包括熟悉數據分析工具和技術,如統計學、數據挖掘、機器學習等。然而,僅靠短時間的數據分析並不足以提供深入見解。 要熟悉數據分析工具和技術,如統計學、數據挖掘和機器學習,可以從以下幾個方面入手: 基礎知識的學習
Thumbnail
數據分析與解讀 隨著數據的爆炸式增長,能夠分析、解讀和應用數據的能力變得至關重要。這包括熟悉數據分析工具和技術,如統計學、數據挖掘、機器學習等。然而,僅靠短時間的數據分析並不足以提供深入見解。 要熟悉數據分析工具和技術,如統計學、數據挖掘和機器學習,可以從以下幾個方面入手: 基礎知識的學習
Thumbnail
本文要探討AI的任務與實戰場景。AI技術已深入生活各層面,從違約預測到都市交通管理。AI任務主要有三類:數值型資料處理、自然語言處理(NLP)和電腦影像辨識。時間序列資料和強化學習方法(如AlphaGo)也引起廣泛關注。AI演算法和方法因應不同學派和技術發展而多樣化,了解這些基礎有助選擇適合研究方向
Thumbnail
本文要探討AI的任務與實戰場景。AI技術已深入生活各層面,從違約預測到都市交通管理。AI任務主要有三類:數值型資料處理、自然語言處理(NLP)和電腦影像辨識。時間序列資料和強化學習方法(如AlphaGo)也引起廣泛關注。AI演算法和方法因應不同學派和技術發展而多樣化,了解這些基礎有助選擇適合研究方向
Thumbnail
AI與人類分工:預測與判斷的智慧結合
Thumbnail
AI與人類分工:預測與判斷的智慧結合
Thumbnail
ChatGPT剛問世的那陣子,世界各地不約而同,出現許多試著教會AI「1+1=3」的人類。
Thumbnail
ChatGPT剛問世的那陣子,世界各地不約而同,出現許多試著教會AI「1+1=3」的人類。
Thumbnail
古代卜卦需要算力,現代社會處理文字及影像同樣需要算力
Thumbnail
古代卜卦需要算力,現代社會處理文字及影像同樣需要算力
Thumbnail
在數位化的世界中,用戶介面和信息圖表等視覺元素扮演著越來越重要的角色,而ScreenAI的開發為自然語言處理和計算機視覺的融合開啟了新的可能性。
Thumbnail
在數位化的世界中,用戶介面和信息圖表等視覺元素扮演著越來越重要的角色,而ScreenAI的開發為自然語言處理和計算機視覺的融合開啟了新的可能性。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News