付費限定

快速準確AI預測全球天氣 with GraphCast by Google Research Lam et al.

更新於 發佈於 閱讀時間約 6 分鐘

在三國演義中,赤壁之戰,諸葛亮憑藉對湖陸風向的預測,火燒連環船,使得孫劉聯軍得以大敗曹操,奠定三國鼎立的基礎。由此可見,對於天氣的精密掌握,不僅得以改善各種生存條件,還能藉此訂定各種軍事策略,對於各種地緣政治紛爭的此刻,有其重大意義,於是各國對於快速準確的天氣預測技術,皆十分有興趣。

Google Research於2023年11月,在自然(Nature)雜誌上,發表了能夠快速且準確預測全球天氣的人工智慧模型,採用自回歸(self-Regression),如同GPT那樣進行逐步推演,可以預測到10天後,比歐洲中期天氣預報中心(ECMWF)用超級計算機計算的高解析HRES方法,預測的還要準確。預測的項目包含溫度,風速,壓力,濕度,等等。開源程式碼python Jax 寫成,Jax套件由Google開發,可對神經網路運算進行加速優化。


論文主要架構:

使用Graph Neuron Network,如下圖所示,每一個Mesh point的Embedding,皆由鄰近的地理天氣數據經過MLP(Multiple Layer Perceptron)編碼產生,此過程被論文稱為Grid-to-Mesh。緊接著,使用MLP採樣如下圖所示M0~M6的Mesh points產生更進一步的Embeddings,此過程被論文稱為Mesh-to-Mesh。最後解回來僅參考鄰近的三個Mesh,輸入皆為上一步產生的,更進一步的Embeddings,經由MLP傳導至輸出,此過程被論文稱為Mesh-to-Grid,這裡的構造設計充分利用資料的空間相關性

自回歸的方式逐步預測全球天氣,利用Grid-Mesh-Grid的資料結構準換,搭建MLP神經網路,用於準確預測全球天氣

自回歸的方式逐步預測全球天氣,利用Grid-Mesh-Grid的資料結構準換,搭建MLP神經網路,用於準確預測全球天氣


時間相關性部分,GraphCast使用相鄰的一個時間來推斷,輸入總共是兩筆時間的Data,後續的預測輸入拿先前的輸出結果來做預測,這就是俗稱自回歸的過程,也是目前GPT文字接龍使用的方式,作者發現取鄰近兩個時間的資料,效果比單一時間還好,取兩個以上的部分,效果並沒有改善很多,相比於Memory使用量的開銷來說。

raw-image


以行動支持創作者!付費即可解鎖
本篇內容共 2702 字、0 則留言,僅發佈於人工智慧宇宙你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
95會員
128內容數
帶你用上帝視角,針對市面上具有高度價值的影片/論文/書籍,用東方取象,與西方邏輯辯證的角度同時出發,跟著我一起來探討宇宙萬事萬物的本質,隨時隨地都可以來一場說走就走的思維旅行。作者在台積電 / 聯發科等科技產業有累計10年的資歷,近期對於人工智慧,東方易經,西方辯證邏輯,還有佛法向內求有深度興趣。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
隨著生成式AI不斷的推陳出新,對於能有效壓縮這些豐富且大量內容的技術,變得至關重要,影響著傳輸速度與執行速度,本文的壓縮架構,能夠有效地做成專用IC,在同樣的畫質水準下,甚至能夠達成JPEG 1/3的壓縮後容量,此方法可應用在各種3D NeRF生成作品上面,各種VR與3D生成技術都必然會用到。
Google Research 在2024年給出了令人滿意的新年禮物,這篇論文內的方法,若持續發展下去,可望顛覆整個影音創作產業,未來製作生動的影音動畫,不再是令人頭痛與耗費心力的一件事情,是不是很酷,讓我們一起看看到底是如何做到的。
要如何做到無須任何額外訓練樣本就能做到"跨語言"的語音生成,這聽起來很不可思議對吧? 但這就是本篇論文取得的成就,不僅如此,該有的功能,如調整情感,口音節奏,停頓語調這些功能也不在話下。跟著我一起用探秘還有獨立思考的眼光來分析這篇論文,這會是很有趣的旅程。
Transformer被廣泛運用在各種生成式AI,激起了本篇作者的好奇心,是否能用Transformer學到所有先驗知識,足以讓它由一張2D圖片還原3D物件。本篇也從Github上面找到由ZexinHe開源的LRM實作程式,讓有興趣的人可以深入研究。
文字生成圖片的擴散生成模型,實際應用上並沒有想像中好用,原因在於,文字能夠乘載的訊息量太少,要產生好的生成結果一定程度仰賴特定的Prompt描述方法,如DALL-E3使用GPT4不斷增加描述的細節,讓文生圖的結果更好,有沒有更有效率的方式呢?
知名的 Mistral AI 團隊近期丟出了使用 SMOE技術搭建的Mixtral-8x7B,能用較小的運算資源與參數量,打敗ChatGPT3的考試成績。本文藉由兩篇SMOE論文的導讀,抽取其中的核心概念,試圖打開技術的神秘面紗。
隨著生成式AI不斷的推陳出新,對於能有效壓縮這些豐富且大量內容的技術,變得至關重要,影響著傳輸速度與執行速度,本文的壓縮架構,能夠有效地做成專用IC,在同樣的畫質水準下,甚至能夠達成JPEG 1/3的壓縮後容量,此方法可應用在各種3D NeRF生成作品上面,各種VR與3D生成技術都必然會用到。
Google Research 在2024年給出了令人滿意的新年禮物,這篇論文內的方法,若持續發展下去,可望顛覆整個影音創作產業,未來製作生動的影音動畫,不再是令人頭痛與耗費心力的一件事情,是不是很酷,讓我們一起看看到底是如何做到的。
要如何做到無須任何額外訓練樣本就能做到"跨語言"的語音生成,這聽起來很不可思議對吧? 但這就是本篇論文取得的成就,不僅如此,該有的功能,如調整情感,口音節奏,停頓語調這些功能也不在話下。跟著我一起用探秘還有獨立思考的眼光來分析這篇論文,這會是很有趣的旅程。
Transformer被廣泛運用在各種生成式AI,激起了本篇作者的好奇心,是否能用Transformer學到所有先驗知識,足以讓它由一張2D圖片還原3D物件。本篇也從Github上面找到由ZexinHe開源的LRM實作程式,讓有興趣的人可以深入研究。
文字生成圖片的擴散生成模型,實際應用上並沒有想像中好用,原因在於,文字能夠乘載的訊息量太少,要產生好的生成結果一定程度仰賴特定的Prompt描述方法,如DALL-E3使用GPT4不斷增加描述的細節,讓文生圖的結果更好,有沒有更有效率的方式呢?
知名的 Mistral AI 團隊近期丟出了使用 SMOE技術搭建的Mixtral-8x7B,能用較小的運算資源與參數量,打敗ChatGPT3的考試成績。本文藉由兩篇SMOE論文的導讀,抽取其中的核心概念,試圖打開技術的神秘面紗。
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
這是嘗試用AI生成的颱風畫面。 我個人覺得有某些畫面還是不錯,但大部分都不是很規範。 在畫面的生成上需要多多學習跟討論的。 提示詞:颱風帶來強勁風勢和豪大雨量,導致多處地區發生淹水、土石流等災害。效果:這張的表示不錯,但房子很顯然是日式的。 提示詞:強風吹倒大量路樹,阻礙交通,並可能造成人員傷亡
Thumbnail
立法委員郭昱晴今(5)於國科會專題報告後,以「數位孿生計畫災防應用」、「TAIDE開發問題」、「國內AI評測制度」三大主題,向國科會主委吳誠文提出質詢。郭昱晴表示,「地球氣候數位孿生」模型Earth-2與中央氣象署的合作,潛力可期。
Thumbnail
查看近日氣候 近日若計畫舉辦戶外活動,想要在你的電腦查詢近日氣候,事先掌握三天內的氣候,或想在你的手機上查看近日氣候。
Thumbnail
在當今快速變化的市場環境中,準確預測客戶需求並迅速應對市場動態成為企業成功的關鍵。本文將探討客戶需求預測的重要性、市場動態的迅速變化以及企業如何透過先進技術如人工智慧(AI)和大數據分析來提升市場反應速度和精準度。
Thumbnail
本文討論了角度數據與消費行為之間的關係。通過對消費者購物車數量與天氣狀態的分析,角度數據揭示了商品與氣候之間的消費狀況。文章還指出了風水對店址選擇的影響,以及角度數據觀察的多個不同維度的關係。這些分析對於理解消費行為和市場趨勢非常重要。
Thumbnail
T1 噴火龍 古劍寶 T2 賽富豪 猛雷鼓 轟鳴月 黏美龍 T3 放逐鬼龍 放逐Box 沙奈朵 T4 未來Box 砲蟲 密勒頓 擋道
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
這是嘗試用AI生成的颱風畫面。 我個人覺得有某些畫面還是不錯,但大部分都不是很規範。 在畫面的生成上需要多多學習跟討論的。 提示詞:颱風帶來強勁風勢和豪大雨量,導致多處地區發生淹水、土石流等災害。效果:這張的表示不錯,但房子很顯然是日式的。 提示詞:強風吹倒大量路樹,阻礙交通,並可能造成人員傷亡
Thumbnail
立法委員郭昱晴今(5)於國科會專題報告後,以「數位孿生計畫災防應用」、「TAIDE開發問題」、「國內AI評測制度」三大主題,向國科會主委吳誠文提出質詢。郭昱晴表示,「地球氣候數位孿生」模型Earth-2與中央氣象署的合作,潛力可期。
Thumbnail
查看近日氣候 近日若計畫舉辦戶外活動,想要在你的電腦查詢近日氣候,事先掌握三天內的氣候,或想在你的手機上查看近日氣候。
Thumbnail
在當今快速變化的市場環境中,準確預測客戶需求並迅速應對市場動態成為企業成功的關鍵。本文將探討客戶需求預測的重要性、市場動態的迅速變化以及企業如何透過先進技術如人工智慧(AI)和大數據分析來提升市場反應速度和精準度。
Thumbnail
本文討論了角度數據與消費行為之間的關係。通過對消費者購物車數量與天氣狀態的分析,角度數據揭示了商品與氣候之間的消費狀況。文章還指出了風水對店址選擇的影響,以及角度數據觀察的多個不同維度的關係。這些分析對於理解消費行為和市場趨勢非常重要。
Thumbnail
T1 噴火龍 古劍寶 T2 賽富豪 猛雷鼓 轟鳴月 黏美龍 T3 放逐鬼龍 放逐Box 沙奈朵 T4 未來Box 砲蟲 密勒頓 擋道