Tesseract OCR - 繁體中文【安裝篇】

更新於 發佈於 閱讀時間約 3 分鐘
GitHub
Tesseract OCRtesseract-ocr/tesseract: Tesseract Open Source OCR Engine (main repository) (github.com)
Tesseract User ManualTesseract User Manual | tessdoc (tesseract-ocr.github.io)
How to train LSTM Tesseracttessdoc/TrainingTesseract-5.md at main ·tesseract-ocr/tessdoc (github.com)
  • 作業系統:win10
  • 版本訊息-命令提示字元(cmd)
C:\Users\user>tesseract --version
tesseract v5.0.1.20220118
 leptonica-1.78.0
  libgif 5.1.4 : libjpeg 8d (libjpeg-turbo 1.5.3) : libpng 1.6.34 : libtiff 4.0.9 : zlib 1.2.11 : libwebp 0.6.1 : libopenjp2 2.3.0
 Found AVX2
 Found AVX
 Found FMA
 Found SSE4.1
 Found libarchive 3.5.0 zlib/1.2.11 liblzma/5.2.3 bz2lib/1.0.6 liblz4/1.7.5 libzstd/1.4.5
 Found libcurl/7.77.0-DEV Schannel zlib/1.2.11 zstd/1.4.5 libidn2/2.0.4 nghttp2/1.31.0

一、安裝tesseract-ocr

二、安裝opencv-python【可略】

python --version
pip install opencv-python
pip install pytesseract
命令提示字元(cmd)

三、安裝語言包tessdata_best

下載:chi_tra.traineddata
貼至(預設路徑):C:\Program Files\Tesseract-OCR\tessdata

四、環境配置

新增【TESSDATA_PREFIX】環境變數
  • C:\Program Files\Tesseract-OCR\tessdata
新增【TESSDATA_PREFIX】環境變數
環境變數PATH 新增
  • C:\Program Files\Tesseract-OCR\tessdata
  • C:\Program Files\Tesseract-OCR
環境變數PATH 新增

五、確認tesseract是否安裝成功

命令提示字元:tesseract
版本: tesseract --version
列出語言包:tesseract --list-langs
命令提示字元
備註:環境變數更動後須重新開機才會啟用設定
為什麼會看到廣告
avatar-img
6會員
46內容數
這是新手寫給新手的學習程式語言基礎教學筆記,內容會以C++為主
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
以下是如何使用 Tesseract OCR 來辨識圖像中的文字的教學。 涵蓋了安裝 Tesseract、基本使用方法,以及如何在 Python 中進行整合。 1. 安裝 Tesseract 首先,需要安裝 Tesseract OCR 工具。這裡提供針對 Windows、macOS 和 Linu
Thumbnail
PyTorch 是一個開源的 Python 機器學習庫,基於 Torch 庫,底層由 C++ 實現,應用於人工智慧領域,如電腦視覺和自然語言處理等。 PyTorch 2.4 引入了多項新功能和改進,包括支援 Python 3.12、AOTInductor 凍結功能、新的高階 Python 自訂運算
Thumbnail
在tesseract-ocr辨識應用中,建議的留白邊框為10pixl,若Label列印的太剛好,沒有任何的邊框時,就會辨識不到文字。 本文將帶大家如何讓圖像增加邊框。 結果圖 示意的比較誇張,我讓邊框增加100pixl,圖片大小原為211*80。
Thumbnail
微調(Fine tune)是深度學習中遷移學習的一種方法,其中預訓練模型的權重會在新數據上進行訓練。 本文主要介紹如何使用新的訓練圖檔在tesseract 辨識模型進行Fine tune 有關於安裝的部分可以參考友人的其他文章 Tesseract OCR - 繁體中文【安裝篇】 將所有資料
Thumbnail
平時都在用tesseract來辨識OCR的部分,在網路上也常常聽說easyOCR比tesseract好用,就拿之前測試的OCR素材來比較看看囉。 以下輸入同樣圖片直接測試,並非絕對誰就比較準,只單純測試數字含英文的部分。 圖片素材就是15碼(英文加數字),檔名為OCR正確結果
Thumbnail
EasyOCR是一個能夠幫助你對圖片中的文字進行辨識的工具,透過進階分析,可以應用在文件掃描、自動化數據輸入、發票掃描等領域。本章節將介紹如何安裝、引用模型、進行文字辨識、以及辨識結果的分析。透過學習,你可以建立屬於自己的文字辨識系統。
Thumbnail
OpenCV(Open Source Computer Vision Library)是一個開源的計算機視覺和影像處理庫,它提供了豐富的功能和工具,可用於開發各種視覺應用程式。 OpenCV最初是用C++編寫的,但它也提供了Python、Java等多種程式語言的接口,方便不同語言的開發者使用。
Thumbnail
torchaudio 是 PyTorch 的官方音訊處理庫,提供了許多用於音訊數據讀取、轉換和處理的工具和功能。它旨在簡化音訊數據的加載、預處理和後續處理過程,同時與 PyTorch 緊密整合, 包括我們常常用於資料科學處理的Tensor資料。 這個篇章主要在分享我們如何使用標準的I/O進行讀
Thumbnail
Google Tesseract Config說明,程式範例實際修改示範 前言 Tesseract 的 config 檔案用於指定 OCR 引擎的設定和參數。這些參數可以影響文本識別的結果 本文將彙整常用參數調整,並呈現不同參數出現不同的辨識結果 官網Tesseract OCR參數說明連結
Thumbnail
使用Google Tesseract應用,擷取圖像的OCR並將讀取到的字元標註在原圖上 光學字元辨識功能 (Optical character recognition,光學字符辨識) 可以將影像中特徵範圍內的文本轉換為數字形式的文本。使用前必須安装Google Tesseract並更新
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
以下是如何使用 Tesseract OCR 來辨識圖像中的文字的教學。 涵蓋了安裝 Tesseract、基本使用方法,以及如何在 Python 中進行整合。 1. 安裝 Tesseract 首先,需要安裝 Tesseract OCR 工具。這裡提供針對 Windows、macOS 和 Linu
Thumbnail
PyTorch 是一個開源的 Python 機器學習庫,基於 Torch 庫,底層由 C++ 實現,應用於人工智慧領域,如電腦視覺和自然語言處理等。 PyTorch 2.4 引入了多項新功能和改進,包括支援 Python 3.12、AOTInductor 凍結功能、新的高階 Python 自訂運算
Thumbnail
在tesseract-ocr辨識應用中,建議的留白邊框為10pixl,若Label列印的太剛好,沒有任何的邊框時,就會辨識不到文字。 本文將帶大家如何讓圖像增加邊框。 結果圖 示意的比較誇張,我讓邊框增加100pixl,圖片大小原為211*80。
Thumbnail
微調(Fine tune)是深度學習中遷移學習的一種方法,其中預訓練模型的權重會在新數據上進行訓練。 本文主要介紹如何使用新的訓練圖檔在tesseract 辨識模型進行Fine tune 有關於安裝的部分可以參考友人的其他文章 Tesseract OCR - 繁體中文【安裝篇】 將所有資料
Thumbnail
平時都在用tesseract來辨識OCR的部分,在網路上也常常聽說easyOCR比tesseract好用,就拿之前測試的OCR素材來比較看看囉。 以下輸入同樣圖片直接測試,並非絕對誰就比較準,只單純測試數字含英文的部分。 圖片素材就是15碼(英文加數字),檔名為OCR正確結果
Thumbnail
EasyOCR是一個能夠幫助你對圖片中的文字進行辨識的工具,透過進階分析,可以應用在文件掃描、自動化數據輸入、發票掃描等領域。本章節將介紹如何安裝、引用模型、進行文字辨識、以及辨識結果的分析。透過學習,你可以建立屬於自己的文字辨識系統。
Thumbnail
OpenCV(Open Source Computer Vision Library)是一個開源的計算機視覺和影像處理庫,它提供了豐富的功能和工具,可用於開發各種視覺應用程式。 OpenCV最初是用C++編寫的,但它也提供了Python、Java等多種程式語言的接口,方便不同語言的開發者使用。
Thumbnail
torchaudio 是 PyTorch 的官方音訊處理庫,提供了許多用於音訊數據讀取、轉換和處理的工具和功能。它旨在簡化音訊數據的加載、預處理和後續處理過程,同時與 PyTorch 緊密整合, 包括我們常常用於資料科學處理的Tensor資料。 這個篇章主要在分享我們如何使用標準的I/O進行讀
Thumbnail
Google Tesseract Config說明,程式範例實際修改示範 前言 Tesseract 的 config 檔案用於指定 OCR 引擎的設定和參數。這些參數可以影響文本識別的結果 本文將彙整常用參數調整,並呈現不同參數出現不同的辨識結果 官網Tesseract OCR參數說明連結
Thumbnail
使用Google Tesseract應用,擷取圖像的OCR並將讀取到的字元標註在原圖上 光學字元辨識功能 (Optical character recognition,光學字符辨識) 可以將影像中特徵範圍內的文本轉換為數字形式的文本。使用前必須安装Google Tesseract並更新