當植物遇見光能:探索光合作用的神奇世界!

更新於 發佈於 閱讀時間約 1 分鐘

第二章

一、初級反應

(一)光能的吸收

1. 色素

類囊體上負責收集光能的色素主要為葉綠素(chlorophyll)與類胡蘿蔔素(carotenoid)。葉綠素分為為葉綠體a和葉綠體b,吸收光波長主要分為葉綠體a吸收640~660nm,而葉綠體b吸收430~450nm。另外類胡蘿蔔素主要分為a、B、r-類胡蘿蔔素,其中a類胡蘿蔔素及類胡蘿蔔素衍生物葉黃素吸收光譜為400~520,其中高峰位於440~460 nm。葉綠素主要吸收藍、紅光,而類胡蘿蔔素主要吸收藍紫光,其中綠色是植物最少吸收的光波長。

2. 光系統

光系統為補光複合體與反應中心複合體組成。補光複合體不具光化學活性只能傳遞光能為葉綠素a和葉綠素b等,而反應中心複合體包含具有光化學活性的特殊葉綠素a對能將光能轉化成化學能。

(二)光能的傳遞

當低能量的色素吸收光能後由基態轉為激發態,能量可能藉由釋放電子產生熱或利用釋放螢光或磷光消散,而透過共振的方能將能量傳遞到附近的色素分子,最終的激發態葉綠色素分子釋放電子進而推動光反應發生。光能傳遞方式分為同色素分子及不同的色素分子。

1.同色素分子:利用共振朝向反應中心傳遞

2.不同的色素分子:

(1)葉綠素b傳遞葉綠素a效率100%

(2)類胡蘿蔔傳遞葉綠素a效率90%

(3)類胡蘿蔔傳遞葉綠素b傳遞葉綠素a效率在傳遞給特殊葉綠素a對

(三)光能的轉換

特殊葉綠素a對將電子傳給鎂葉綠色素,再傳給類囊體膜上的電子受體醌Q

,而電子受體醌Q產生還原反應形成帶負電的還原態,這種將光能轉為化學能的過程稱為光化學反應

 

avatar-img
2會員
13內容數
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
張巾龔的沙龍 的其他內容
依照利用碳的方式生物被區分為自營與異營生物,自營生物能藉由吸收環境中的無機碳並將其轉換為可以利用的有機碳,而異營生物則是使用有機碳作為營養源。 植物作為自營生物,能在細胞內利用光能將大氣中的co2固定為結構碳,其中細胞內的葉綠體為化學反應發生的主要場所
  植物與人類同樣是地球上的生命,如同就像動物一般,它們也能感受、呼吸並與其他生物體進行溝通。所以切菜時他一定一邊嘶吼著
當你改變你的人生   人生說長不長說短不短,當你只有20來歲怎麼去體會6、70歲的心境,當你沒有長者般的經驗如何去談人生與生命的價值,而生命最終又須要往哪走往哪裡向前漫進,也許這是個沒有答案的問題,只有活在當下把握生命的每一刻,當你使自己去感受書寫人生的意境才能進一步活出自己生命的意義。
茶樹的修剪: 好好一棵樹生從此打亂,從此下半生過著喝肥宅快樂肥料水,並且每年時間一到還有人欺負你的生活。茶作為一棵樹想想都氣,但萬惡的物種人類為了採茶可以不顧茶樹的生命,那些採不出或品質不高時就開始打壓,45逐漸到離地6~9公分然後就估死了,想想也對我一直認為植物是有心的,每天老闆996還加班
  茶作為台灣重要的飲料作物,具有極大的重要性。當生活節奏變得繁忙,我們常常需要放慢腳步,享受一杯溫熱現泡的綠茶,搭配著下午溫潤的書香。這樣的時刻能使心中的石塊輕輕放下,解開逐漸緊繃的心弦。而要了解茶樹的養分利用,不僅需要瞭解植物生理與解剖,還需要對相關的學科有深入的了解。
   在現代商業環境中,成本會計是管理人員制定決策的重要依據。然而,在考慮成本時,我們必須同時關注其他非財務績效指標,例如作業人員之觀察其品質與顧客滿意度。這些因素綜合起來,能夠提供更全面的洞察,幫助管理人員做出明智的決策。
依照利用碳的方式生物被區分為自營與異營生物,自營生物能藉由吸收環境中的無機碳並將其轉換為可以利用的有機碳,而異營生物則是使用有機碳作為營養源。 植物作為自營生物,能在細胞內利用光能將大氣中的co2固定為結構碳,其中細胞內的葉綠體為化學反應發生的主要場所
  植物與人類同樣是地球上的生命,如同就像動物一般,它們也能感受、呼吸並與其他生物體進行溝通。所以切菜時他一定一邊嘶吼著
當你改變你的人生   人生說長不長說短不短,當你只有20來歲怎麼去體會6、70歲的心境,當你沒有長者般的經驗如何去談人生與生命的價值,而生命最終又須要往哪走往哪裡向前漫進,也許這是個沒有答案的問題,只有活在當下把握生命的每一刻,當你使自己去感受書寫人生的意境才能進一步活出自己生命的意義。
茶樹的修剪: 好好一棵樹生從此打亂,從此下半生過著喝肥宅快樂肥料水,並且每年時間一到還有人欺負你的生活。茶作為一棵樹想想都氣,但萬惡的物種人類為了採茶可以不顧茶樹的生命,那些採不出或品質不高時就開始打壓,45逐漸到離地6~9公分然後就估死了,想想也對我一直認為植物是有心的,每天老闆996還加班
  茶作為台灣重要的飲料作物,具有極大的重要性。當生活節奏變得繁忙,我們常常需要放慢腳步,享受一杯溫熱現泡的綠茶,搭配著下午溫潤的書香。這樣的時刻能使心中的石塊輕輕放下,解開逐漸緊繃的心弦。而要了解茶樹的養分利用,不僅需要瞭解植物生理與解剖,還需要對相關的學科有深入的了解。
   在現代商業環境中,成本會計是管理人員制定決策的重要依據。然而,在考慮成本時,我們必須同時關注其他非財務績效指標,例如作業人員之觀察其品質與顧客滿意度。這些因素綜合起來,能夠提供更全面的洞察,幫助管理人員做出明智的決策。
你可能也想看
Google News 追蹤
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
世界上最重要的胞器肯定是葉綠體。植物的葉綠體行光合作用,產生許多糖與分子,用來合成各式各樣的分子;然後動物吃植物,把植物的分子消化後重組成自己需要的分子。 葉綠體源自於藍綠菌,但是與高等植物建立共生關係之後,葉綠體是否發生過轉變呢?
Thumbnail
在黑暗中生長的植物會經歷所謂的「暗型態發生」:短短的根、細細長長的莖,黃色且緊閉的子葉,就像豆芽菜一樣。 暗型態發生是植物將自己的所有資源都調動去找光的過程,是植物的求生方式;最近的研究發現,隱花色素2(CRY2)對於暗型態發生也很重要喔!
Thumbnail
植物的葉綠體不只是提供光合作用的產物給植物,還肩負著提供植物細胞能量(ATP)的角色。因此,每個植物細胞平均所含有的粒線體數目,比動物細胞要少。但是,當冬季來臨,日照時間變短時,植物要怎麼因應因為日照時間變短,產生的ATP變少的狀況呢?
Thumbnail
對光合自營生物來說,沒有比準確的看到光更重要的事情了,所以植物不只是要看到有光沒光,還要看到光的強度、光的顏色,並根據這些資訊做出適當的反應。 也因此,植物有一整套的光受器來對不同波長的光作出反應。其中,對紫外光的反應,特別有趣。
Thumbnail
對絕大部分的植物來說,進行光合作用是最重要的事,而要進行光合作用就需要葉綠體(chloroplast)。所以,葉綠體能不能正常發育,對植物非常重要。 過去的研究發現一個稱為GLK的轉錄因子(transcription factor),對葉綠體發育很重要。最近又發現了更多的重要基因喔!
Thumbnail
Cyanophora paradoxa是一種淡水藻類,有兩根鞭毛,屬於灰藻的一種。這種藻類有兩個「葉綠體」(cyanelle),負責進行光合作用。由於它的「葉綠體」還保有類似細菌的肽聚糖(peptidoglycan),所以被認為有可能是植物的祖先。 它對賀爾蒙會有反應嗎?
Thumbnail
短波紫外光(UV-B)不只是會讓我們曬黑,對植物來說,UV-B也會對它們造成嚴重的傷害。這意味著,植物也需要感應UV-B並做出適當的反應。 植物可以透過光受器看到UV-B,最近的研究發現,植物看到UV-B之後,會自己合成強力防曬霜喔!
Thumbnail
葉黃素(Lutein)屬於類胡蘿蔔素(Carotenoid),在自然界中與玉米黃素共同存在。人體的視網膜黃斑部中存在高濃度的葉黃素。  經臨床研究證實,葉黃素具有過濾藍光、抗發炎、抗自由基等特性。葉黃素無法由人體自行合成,因此必須透過食物中攝取。  哪些食物中含有葉黃素  葉黃素豐富存在於
透過光的波粒二相性,佐以光速不變的違和感與大型粒子對撞機的科技,對個人形成虛擬世界與現實世界的溝渠,彷彿時刻都能擁有兩個世界,像光一樣活著,生命既豐碩又美麗。
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
世界上最重要的胞器肯定是葉綠體。植物的葉綠體行光合作用,產生許多糖與分子,用來合成各式各樣的分子;然後動物吃植物,把植物的分子消化後重組成自己需要的分子。 葉綠體源自於藍綠菌,但是與高等植物建立共生關係之後,葉綠體是否發生過轉變呢?
Thumbnail
在黑暗中生長的植物會經歷所謂的「暗型態發生」:短短的根、細細長長的莖,黃色且緊閉的子葉,就像豆芽菜一樣。 暗型態發生是植物將自己的所有資源都調動去找光的過程,是植物的求生方式;最近的研究發現,隱花色素2(CRY2)對於暗型態發生也很重要喔!
Thumbnail
植物的葉綠體不只是提供光合作用的產物給植物,還肩負著提供植物細胞能量(ATP)的角色。因此,每個植物細胞平均所含有的粒線體數目,比動物細胞要少。但是,當冬季來臨,日照時間變短時,植物要怎麼因應因為日照時間變短,產生的ATP變少的狀況呢?
Thumbnail
對光合自營生物來說,沒有比準確的看到光更重要的事情了,所以植物不只是要看到有光沒光,還要看到光的強度、光的顏色,並根據這些資訊做出適當的反應。 也因此,植物有一整套的光受器來對不同波長的光作出反應。其中,對紫外光的反應,特別有趣。
Thumbnail
對絕大部分的植物來說,進行光合作用是最重要的事,而要進行光合作用就需要葉綠體(chloroplast)。所以,葉綠體能不能正常發育,對植物非常重要。 過去的研究發現一個稱為GLK的轉錄因子(transcription factor),對葉綠體發育很重要。最近又發現了更多的重要基因喔!
Thumbnail
Cyanophora paradoxa是一種淡水藻類,有兩根鞭毛,屬於灰藻的一種。這種藻類有兩個「葉綠體」(cyanelle),負責進行光合作用。由於它的「葉綠體」還保有類似細菌的肽聚糖(peptidoglycan),所以被認為有可能是植物的祖先。 它對賀爾蒙會有反應嗎?
Thumbnail
短波紫外光(UV-B)不只是會讓我們曬黑,對植物來說,UV-B也會對它們造成嚴重的傷害。這意味著,植物也需要感應UV-B並做出適當的反應。 植物可以透過光受器看到UV-B,最近的研究發現,植物看到UV-B之後,會自己合成強力防曬霜喔!
Thumbnail
葉黃素(Lutein)屬於類胡蘿蔔素(Carotenoid),在自然界中與玉米黃素共同存在。人體的視網膜黃斑部中存在高濃度的葉黃素。  經臨床研究證實,葉黃素具有過濾藍光、抗發炎、抗自由基等特性。葉黃素無法由人體自行合成,因此必須透過食物中攝取。  哪些食物中含有葉黃素  葉黃素豐富存在於
透過光的波粒二相性,佐以光速不變的違和感與大型粒子對撞機的科技,對個人形成虛擬世界與現實世界的溝渠,彷彿時刻都能擁有兩個世界,像光一樣活著,生命既豐碩又美麗。