因子投資進化論

更新於 發佈於 閱讀時間約 96 分鐘
投資理財內容聲明
raw-image

前言:


我是狂徒,一段時間沒上方格子了,趁周末寫了一篇因子的文章,快速帶過一些心得。

如果你不認識我,只要知道我是個不務正業的浪人就好。

我沒有商科或金融背景,愛看網路資料,偶而寫點文章,歡迎各位批評指教。


近期我比較常在FB/IG出沒,如果有問題或建議,可以留言或私訊找我,我不常登入就是了。


另外很重要的一點,我誠徵書或貼紙的拍照model,如果妳/你自信開朗也願意試試,歡迎聯絡 :)


#####################



今天談「因子」在投資中的一些概念。


如果你對因子投資有興趣,除了可以和我討論之外,我也介紹兩個台灣的朋友,Frank和Jin.

兩個都業界學界實力派,Frank是投資沙岸撿貝人,CFA 3過;Jin則是我頭號大弟子,台大財金碩+資科(他應該都可以自立宗派了但很低調)。

事實上我們很常有意見不同的地方,但討論就是這樣才好玩。

揀貝人

槓桿指投Jin


關於我對被動投資、CAPM和多因子的簡短想法,各位朋友可以參考這篇。



在我寫的被動投資書《穩定致富》中,我建議讀者可以延伸閱讀一些資產定價的書,包括實證和理論。

這裡我快速把FB文章的脈絡接起來,如果各位想要深入了解,可以依據我提到的模型去研究。

不過基於功利性,我不推薦細讀,瀏覽即可。



先來點化石級理論101,這是近代投資框架的基石。


在隨機貼現(SDF)這種大一統模型之下,如果你只用前兩階矩描述投資人要的投資策略特性,或報酬是橢球聯合分布,就會讓二次型(MV最優)能夠描述效用函數,這時決策只和她的財富兩階矩有關。

如果你再假設他所承受的風險只有市場(以及MV有效、有無風險資產、同質預期、單期、無摩擦...等一堆假設,我就不展開),那可以簡化成一個帶Beta的訂價模型,也就是CAPM.

而Merton的ICAPM則是對於單期CAPM的跨期拓展,不但有多因子,而且關心市場和狀態的變化。

至於CCAPM,就是一種基於消費、一聽就是經濟學產物的模型。(其中Campbell Cochrane的外生習慣偏好就是個例子。)

另一方面,APT本身是基於無套利,也不關心投資人是否理性、用什麼效用函數的假設,你只要知道他用多因子來定價即可。


那你怎知上面這些模型準確?

答案是,可以用一些工具來檢測。


兩向量內積不大於兩長度的乘積,這是柯西不等式。

應用在SDF上,資產的超額報酬期望值,在貼現因子E[m]規範到1的時候,等於和SDF的負共變異數。

同時這共變異數的絕對值,也不大於資產超額報酬的標準差和SDF標準差的乘積。

或者同規範下,一個合理模型的理論最大夏普率,應該不大於SDF的標準差,這個判斷準則就是「HJ邊界」,而對應的理論SDF和可投資空間張成的SDF的最小距離就叫HJ距離。

(如果你看過John Cochrane的Asset Pricing, 可參考§5.6, 我本來要在我的書中放入此當延伸閱讀,但考量到年代太老。)


那針對多因子模型呢? 可以用GRS檢驗。

如果模型夠好,多個Alpha=0是虛無假設,而我的p告訴我排除不了,那只好當模型在現有樣本下「無法拒絕」。(這裡小樣本和p hacking又是另一回事了。)

再來,GMM可以視為用理論的矩來擬合現實矩,因為不挑剔分布模型,也接受異質性變異數和序列相關,所以很常被用在模型的檢驗上,包括SDF和CAPM.


所以,之後的FF3/5/6, q4/5, Carhart4...也都可以藉由上述的工具來深度不等的檢驗。



「狂徒我還要,有沒有特別針對因子的?」

我就知道,上進的妳會這麼問,當然妳不問我還是會跟妳說。


我們剛剛看到各種誤差檢驗法,像是Alpha, R², HJ距離等,但考量到誤差結構,因子值得更好的待遇。

像是Newey West, 針對的就是異質變異數和自相關等會造成OLS偏差的特徵,讓t, p都穩定。

或是考慮到包含時間的面板資料,雙向聚類就可以處理兩資料的相關性。


當然還有各式的修正,像是小樣本修正和Shanken修正,其中後者又和Fama Macbeth有緊密關係。

FM2可以說是傳統因子投資繞不過的工具,而隨著理論演進,後人使用截面bootstrap, 隨機檢定、樣本切分、regime shift(應該翻成市場變換,但我從來不知道中文怎說)的穩定性...來檢驗這模型的效力,也因此會有Shanken修正,讓第二步標準差能反映第一步截面回歸的估計誤差。



好,現在先換個檔,我從別的角度來輕鬆聊因子這件事。

只說大概念,不談理論推導和工程細節(當然如果我哪裡說錯也歡迎告知)。


或許你會認為,因子的知識不少,但它也只是「量化」投資的一環。

在沒有配套流程的情況下,空談因子根本沒辦法改變投資組合的收益和風險。

妳至少需要有數據、模型和策略的支持,才能讓想法落地,而這還只是非常簡陋的說法。


我沒有要細談坊間的因子投資文化,因為這很大部分是券商想要獲利、民眾想要跟風的產物,例如Smart beta和各種ETF.

不是不行,但是你要知道這中間的傳導鏈很長。

因子要有效、未來要能重現歷史、券商要能把因子曝露做到商品上、超額收益(或IR)要能蓋過內扣成本...妳才真正有得利。


問題是,你怎知道因子的效力?

據我觀察,大部分人只是買個心安,少部分人會去看原始的方法論和相關學術論文,但只有真正認真的投資人才願意且有能力「回測」復現。

(我文章是寫給投資人看的,這也是我非常早期在D卡就討論回測的原因。)

這樣說好了,回測幾百個學術因子要讓個人電腦跑一整天,時間不長,但你這樣做了嗎? 而更後面的步驟我就先不談了。


測試,是區分聽明牌心態和科學研究的分水嶺。

我就曾經幾次在酒店和朋友互相招待,一起拿著筆電跑績效回測,把我們框的陪玩小姐姐/傳播晾在旁邊喝酒唱歌,這就是投資態度。


順便八卦,我夢到某國就有機構自營因子是做錯的,而自營Alpha實力通常要強於公募,因此妳可以猜一下公募ETF的正確率。

(自營是機構自己投入,策略虧損要自己承擔;公募ETF只是賺民眾錢而已,策略虧損也能穩賺內扣。)



「狂徒,所以應該怎麼做?」


一般而言,我們會分割資料集(訓練、驗證、測試)、設定(超)參數搜索的預算、使用多重檢定控制等方式,確保嚴謹性。

其中多重檢定又有一些分支,包括錯誤發現率檢驗(BH法、Storey q值法等,隨假設效力切換)、p值逐步重採樣系列,以及之後的弱隨機對照和隨機優越檢定(這Jin做過)。

如果你聽起來有些元素很像ML,也叫做統計學習,恭喜你答對了,他們確實同源。


對於一個因子,也應該考量一些如排序法和迴歸法的一致性,Barillas Shanken的夏普型檢定(也有人用更傳統的截面Fama MacBeth和時序GRS的F檢定),替換測試等等。

如同我之前提到的,這個因子到底是風險補償還是錯誤行為? 你該區分嗎?

還是對你來說根本沒差,你只要策略收益?

這些看看有道理、實作都是抉擇的事情,都考驗一個因子投資人的基本功。



再來看看,人們為什麼要用因子體系?

答案很簡單,算力和信心不夠做端到端。


大家都希望把原始資訊輸入系統,直接得到下單訊號,但實際上沒人能有意義的做到,所以才會以分次提取、篩選的方式,抓出因子特徵。

數據預處理、清洗、特徵工程、映射、優化...等,就是在把總工程量降低到可接受的範圍,並且讓人類可以清楚每個環節的原理,期望最小化理論和實盤的差距。


從這個角度來看,因子有重要地位,不然策略只是垃圾進出。

然而檢視整個流程,投資追求的不犯低級錯誤,比單點做到卓越還重要,所以「大因子主義」很可能會造成資源錯配。



接下來,我們來看「可解釋性」。


一方面,有些人會希望看到經濟的可解釋,這樣的因子比較可能穩健存在,且更讓投資人安心。

然而這麼做的代價,往往就是讓因子之間的「共線性」很強,導致固定因子數量下的組合特徵可解釋力縮小。


另一方面,有些人寧願不要強可解釋力,而希望用統計學的方式盡量排除純機率產物。

他們的各種因子可能沒有準確名稱,但比較好抓到報酬。


當然這兩者的偏重,隨著流派而不同,也有些方法試圖解決這種衝突,例如偏向無損的正交化、PCA/iPCA...

至於特徵縮減是提高CP值的方法,像是eigen投組、Nagel等人的SDF投射,還有嶺和收縮等技術,都是好嘗試。

可是說到底,在線性組合和模型基底的前提下,你注定會損失很多交互項的資訊。

如果要再顧及簡潔性而強制「稀疏」,那就經常(尤其在樣本充足下)進一步犧牲了模型的表現。



「狂徒,怎麼辦?」


看起來讓人類能理解,以及實際上有效果,很難兼顧。

不過好消息是,還是有一些可能的突破點。


例如「因果」性的因子,我們可以用一些因果貝氏網路圖,重現風險和報酬的傳導方向和順序(若要考慮報酬時序變化,通常用DAG/PCMCI),篩選出真正造成影響的父節點。

這不僅能最大無損的降維,而且還能提升因子表現穩定性。

一些像是雙重差分(DiD)檢查平行趨勢或事件研究的方法,多期錯位的處理,以及試圖解決內生性問題的工具變數(IV的關聯性、外生性和弱工具穩健檢驗),還有底層工具如雙重ML、雙重穩健、去偏誤的LASSO、後(變數)選擇推論...都在讓投資人更能掌握因果性,例如穩健推論風險價格。


另外一條路就是引入XAI(用到LIME/SHAP/GAM),試圖用另一個較小的擬合模型、局部代理和歸因框架,解釋大因子模型的原理。

雖然這比較像是後天賦予一個機制經濟敘事的定義,包括摩擦限制、套利、資訊擴散函數,但這種proxy的因果圖或結構方程式(利用N/PC/FCI再剪枝),效能往往好過於人類的猜測和感覺。

因此你能驗證和理論的方向是否一樣,而不是只停留在重要度排名。


你說我為何考慮這些?

大概是因為我之前和Jin討論過Pastor Stambaugh貝氏先驗(和階層先驗)和收縮、流動性因子,還有和頻率派「懲罰項」而有些心得。



至於降維這件事,又有很多非線性的作法和嘗試。


像是利用自編碼器(autoencoder)的表徵學習,提取出潛在因子(latent factor),也可以減少壓縮損失。

或是壓到流形(manifold)上,再用距離、局部線性或NN來處理,也有人嘗試在理論上使用TDA(topology)和同胚態射(homeomorphism).

(跳脫因子區,也有人用Monte Carlo和HRP家族來解決「維度爆炸」問題,但那比較屬於處理高維資料,妥協於算力的工程手段。)



因子挖掘呢? 看你信不信工程自動化。


人力做到規模最大的應該是WorldQuant,這個有比賽過、當導師的會很清楚,但我覺得相當血汗。

(當然如果你志在進入量化機構,有WQ的經歷是加分項,只是妳最好要知道這可能僅因為妳耐操。)


至於自動生成,可以分成數據驅動和知識驅動。

數據驅動又分為rule based的算子因子生成,包括暴力因子組合、GP/GA,或是ML提取、RL改進的做派。

知識驅動可以是單純的RAG+embedding+LLM,接近使用GPT的作法,或是進一步耦合的RD agents,能自動讀論文並和策略區共優化(co optimization).



現在當妳很高興的拿到一堆單因子,好戲才要開始,因為妳要考慮怎麼組合它們。


就以混頻率、多模態的原始因子而言,你怎知Alpha decay, 動態性是什麼函數?

妳要怎麼把輿情、價量、統計、財報、影音...的資訊融合?或乾脆捨棄?

業界可以很輕易的挖到破億因子,實際入庫的從幾百到幾萬都有,怎麼辦到的?


現實就是資源有限,妳需要取捨。


你是該把時間和算力花在挖掘本身,期望大力出奇蹟?

還是透過GMM, GRS, MV spanning, 多元回歸等方式,用因子的潛能篩選?

(這裡好笑的是,三階以上風險矩像是coskew, cokurt, 理論上要被mimicking進入投資組合,但也有偷懶做法是直接被降成一階因子,走綠色通道再來。)

或是用BL和Bayesian置入一些主觀判斷(雖然這方式有點爭議)?

還是,妳想算了,在既有因子下直接優化妳的策略和最終權重?


我曾經在西濱騎車兜風,時速300左右的時候遇到條子,我後來查看GPS,也不過285公里每小時。

你知道這代表什麼嗎? 這代表我面前有個快樂度5%的時速表。

同理,當妳看著完美的因子曲線和實盤的差距,要怎樣確保損失最小? 又怎麼量化的測量誤差? 妳該花多少成本在這上面?

或者是你不考慮這些了,乾脆採取局部外包、借鑒策略,像是走Barra體系的前段因子生成、後段風險因子矩陣,但中段in house模型的「夾心」設計?

(BTW 我出席的場合上,S&P公司跟我說他們有賣六百多個因子,順便賣因子模型,但我嚴重懷疑這些有效性。)



因子是個有趣的框架,但它不是唯一。


想想看,不管你的因子功力多強,你都希望整體框架的跨資產、跨國、跨品種、跨結算規則、做空和漲停限制...之下,有最好的表現,而不是理論上冠軍,實際上吃土。

那麼你的風控能停在交易端嗎? 妳是不是應該考慮各種「壓力」,像是波動、流動性、尾部、特定環境的因子衰退?

你在算力和效力的取捨,是否也是一種優化? 包括你在思考優化這件事情的時候,是否又是一種時間-資本-優化效益的meta(元)優化?


我知道有人會把因子歸類在截面,而後套用時序模型(或是平行開發CTA),最後再將策略混合,得出權重。

這聽起來非常合理,因為分別對應選股、擇時、配置,也確實比較省力。

不過仔細想想,這些環節實際上可以交叉使用,例如用時序特徵(通常是價量因子)選股,以及利用時序分析,包括傳統的ARCH/GARCH/ARIMA和GRU/LSTM/TFT...處理截面因子的變化。

至少在學界,已經有人利用ML處理因子的動量變化(也就是因子的因子),還有像修大成那種做法,直接把價量轉圖、餵給CNN,抓隱藏因子。

也有一些比較從底層解決的做法嘗試,像我曾利用AWS的平台估算量子計算在不同廠家的成本,希望應用在多投資組合優化。(包括量子退火等算法,和超導、離子阱成本和持久力的取捨。)



在目睹技術提升的同時,我們也可以從更抽象宏觀的視角,俯瞰因子在投資框架中的角色。

這呼應了我開頭提到的因子存在意義,當算力和算法越來越先進時,它本身的邊界會逐漸模糊。


一些很工程導向、尤其是AI/ML類的的解決方式,像是用DRL貫穿全流程的FinRL,以及台灣就有人在研究交易用途(但有簽保密協議)的MARL,或是聽起來有點好笑的multi AI agents甚至agentic的決策流程(雖然按業界某朋友說法是startup騙VC錢的),以及LQM(大量化模型,目前主要用於生技等)和LIM(大投資模型,主要是理論框架)的兩類端到端嘗試...隨著算力的爆發性提升,都在讓因子分析、提取、配置,逐漸融入整體。

就如同當所有人都熟悉因子加上ML的時候,ensemble, AutoML, HPO, NAS, meta learning...等工具,就從選項變成了必備。

或者換個說法,局部優化正在擴大成全局優化。


相似的,考慮到交易的點差、流動性和永久或臨時衝擊成本(包括Kyle lambda的線性,Amihud這種雙曲線,以及更時序分析導向的函數,還有像Almgren Chriss之類的優化法),策略和因子的穩健性、泛用性和精確性權衡,疊代提升速度和生產穩定性的兼顧,模型複雜度和可解釋性,部署端的DevOps、CI/CD的pipeline和自適應、混沌性工程、版本控制和錯誤歸因樹(這也有點像因子分析)...各種深度、廣度和層級的優化,都在讓體系越來越強。

這可不僅僅是理論上的最高SR、最大四階矩優化、最大回報、最大散度或最小波動,也不是簡單的掛個RL去優化交易端...而是涉及費後、實際上的Alpha, IR、CE(確定性等價,包含報酬、風險、成本)、持倉上限、借券成本、成交率門檻、擁擠度、周轉率、研究報告成本、滑點控制、算力成本回饋到模型架構設計、預期邊際報酬和研發成本、數據壓縮和傳輸...的優化。


以上這串,我本來也沒怎麼研究。

但當我和業界避險基金、公募基金、私募基金、家族辦公室經理,投行MD、機構研究員、交易員、數據商、startup CEO/PhD朋友和工程師交流之後,就覺得問題不小。

你完全可以說這不關因子的事情,但你在測試因子的時候,根本逃不掉。


如果你高興,也可以稱此為涉及知識、資本、時間、人才、效率和膽識的「軍備競賽」。



那麼,會不會有一天,我在JPM期刊讀到的"new" Fama MacBeth,也會變成曾經的匠心獨運?

就如同第一次有人把LASSO應用到old Fama Macbeth上的時候,在模型估計表現的突破,至今變成了人類繼續前進的基石,


依然有人在努力,就像French教授的網站,還在持續更新因子簡單歸類的股票數據。

依然有人求突破,就像那位戲稱自己「被巨人踩在肩膀上」、和Fama有點恩怨情仇, 提出性能更優良的q5模型的張櫓教授等人。

依然有人在挑戰知識前緣,就像離開Fama的效率假說門下,建立AQR的Asness,後來轉向使用了ML.


學海無涯,或許一個人永遠也學不完,但市場的錢也永遠賺不完。

如果你看完我以上寫的閒聊內容,覺得有興趣了解,不妨找幾篇文獻來讀,思考自己所處的位置,以及可補強和避免的地方。


我也鼓勵各位多交流,我之前寫信給Fama, French, AQR的時候,可沒預期會收到怎樣的回覆。

我在矽谷的酒吧搭訕妹子演講者,也不知道會遇到同行;我在華爾街的聚會上,也沒想到能認識後來合作研究的朋友。


如果你對因子也有了解,歡迎討論。

我是狂徒,我們下次不知道什麼時候見。




註:

本來這篇文章是我吃完飯隨手寫的,所以也沒有什麼深度和引用(我也不可能把真的know how寫出來)。

後來想想還是找一些文獻補上,各位可以參考,當作我這些簡介的延伸閱讀。

(警告,這複製貼上自我的一些筆記和私人對話,以及我購買和參閱文獻的原始引用,僅經我肉眼確認,並用程式腳本排序編號。有些文獻後來被作者撤下,因此務必自行翻閱、驗證。)

你想真的脫離本文的淺層概念的話,還是要花時間自己提升,

保持批判和學術攻擊,當我說的都有可能出錯,這才叫「思考」。



[1] AQR Data Library. https://www.aqr.com/Insights/Datasets

[2] Abadie, Alberto, Alexis Diamond, and Jens Hainmueller (2010). Synthetic Control Methods for Comparative Case Studies. Journal of the American Statistical Association.

[3] Acharya, Viral V., and Lasse H. Pedersen (2005). Asset Pricing with Liquidity Risk. Journal of Financial Economics.

[4] Almgren, Robert, and Neil Chriss (2001). Optimal Execution of Portfolio Transactions. Journal of Risk.

[5] Amenc, Noël, Felix Goltz, and Lionel Martellini (2013). Smart Beta 2.0. EDHEC-Risk Institute Publications.

[6] Amihud, Yakov (2002). Illiquidity and Stock Returns: Cross-Section and Time-Series Effects. Journal of Financial Markets.

[7] Amihud, Yakov, and Haim Mendelson (1986). Asset Pricing and the Bid-Ask Spread. Journal of Financial Economics.

[8] Andrews, Donald W. K. (1991). Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation. Econometrica.

[9] Ang, Andrew, and Joseph Chen (2007). CAPM Over the Long Run: 1926–2001. Journal of Empirical Finance.

[10] Angrist, Joshua D., and Jörn-Steffen Pischke (2009). Mostly Harmless Econometrics. Princeton University Press.

[11] Arellano, Manuel (1987). Computing Robust Standard Errors for Within-groups Estimators. Oxford Bulletin of Economics and Statistics.

[12] Arnott, Robert D., Jason C. Hsu, and Philip Moore (2005). Fundamental Indexation. Financial Analysts Journal.

[13] Arnott, Robert, Noah Beck, and Vitali Kalesnik (2016). Timing ‘Smart Beta’. Journal of Portfolio Management.

[14] Asness, Clifford S., Andrea Frazzini, and Lasse H. Pedersen (2019). Quality Minus Junk. Review of Accounting Studies / Journal of Finance

[15] Asness, Clifford S., Tobias J. Moskowitz, and Lasse H. Pedersen (2013). Value and Momentum Everywhere. Journal of Finance.

[16] Back, Kerry E. (2010). Asset Pricing and Portfolio Choice Theory. Oxford University Press.

[17] Bai, Jushan, and Serena Ng (2002). Determining the Number of Factors in Approximate Factor Models. Econometrica.

[18] Bansal, Ravi, and Amir Yaron (2004). Risks for the Long Run: A Potential Resolution of the Equity Premium Puzzle. Journal of Finance.

[19] Barberis, Nicholas, and Richard Thaler (2003). A Survey of Behavioral Finance. Handbook of the Economics of Finance.

[20] Barillas, Francisco, and Jay Shanken (2017). Comparing Asset Pricing Models. Journal of Finance.

[21] Barillas, Francisco, and Jay Shanken (2018). Which Alpha? Review of Financial Studies.

[22] Bates, J. M., and C. W. J. Granger (1969). The Combination of Forecasts. Operational Research Quarterly.

[23] Belloni, Alexandre, Victor Chernozhukov, and Christian Hansen (2014). Inference on Treatment Effects after Selection among High-Dimensional Controls. Review of Economic Studies.

[24] Benjamini, Yoav, and Daniel Yekutieli (2001). The Control of the False Discovery Rate in Multiple Testing under Dependency. Annals of Statistics.

[25] Benjamini, Yoav, and Yosef Hochberg (1995). Controlling the False Discovery Rate. Journal of the Royal Statistical Society: Series B.

[26] Bergstra, James, and Yoshua Bengio (2012). Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research.

[27] Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan (2004). How Much Should We Trust Differences-in-Differences Estimates? Quarterly Journal of Economics.

[28] Bertsimas, Brown, and Caramanis (2011/2012). Theory and Applications of Robust Optimization. SIAM Review.

[29] Bertsimas, Dimitris, and R. Tyrrell Rockafellar/Caramanis

[30] Black, Fischer, Michael C. Jensen, and Myron Scholes (1972). The Capital Asset Pricing Model: Some Empirical Tests. In Studies in the Theory of Capital Markets.

[31] Black, Fischer, and Robert Litterman (1992). Global Portfolio Optimization. Financial Analysts Journal.

[32] Black, Fisher (1972). Capital Market Equilibrium with Restricted Borrowing. Journal of Business.

[33] Blitz, David C., and Pim van Vliet (2007). The Volatility Effect: Lower Risk without Lower Return. Journal of Portfolio Management.

[34] Boehmer, Ekkehart, Charles M. Jones, and Xiaoyan Zhang (2008). Which Shorts Are Informed? Journal of Finance.

[35] Bollerslev, Tim (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics.

[36] Box, George E. P., and Gwilym M. Jenkins (1970). Time Series Analysis: Forecasting and Control. Holden-Day.

[37] Breck, Eric, et al. (2017). The ML Test Score: A Rubric for ML Production Readiness. IEEE Big Data.

[38] Breeden, Douglas T. (1979). An Intertemporal Asset Pricing Model with Stochastic Consumption and Investment Opportunities. Journal of Financial Economics.

[39] Breiman, Leo (1996). Bagging Predictors. Machine Learning.

[40] Breiman, Leo (2001). Random Forests. Machine Learning.

[41] Bun, Joël, Jean-Philippe Bouchaud, and Marc Potters (2017). Cleaning Large Correlation Matrices: Tools from Random Matrix Theory. Physics Reports.

[42] Callaway, Brantly, and Pedro H. C. Sant’Anna (2021). Difference-in-Differences with Multiple Time Periods. Journal of Econometrics.

[43] Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller (2011). Robust Inference with Multiway Clustering. Journal of Business & Economic Statistics.

[44] Campbell, John Y., Andrew W. Lo, and A. Craig MacKinlay (1997). The Econometrics of Financial Markets. Princeton University Press.

[45] Campbell, John Y., and John H. Cochrane (1999). By Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior. Journal of Political Economy.

[46] Carhart, Mark M. (1997). On Persistence in Mutual Fund Performance. Journal of Finance.

[47] Carlsson, Gunnar (2009). Topology and Data. Bulletin of the American Mathematical Society.

[48] Chamberlain, Gary, and Michael Rothschild (1983). Arbitrage, Factor Structure, and Mean–Variance Analysis on Large Asset Markets. Econometrica.

[49] Chen, Lihong, Markus Pelger, and Jason Zhu (2021). Deep Learning in Asset Pricing. Management Science.

[50] Chernozhukov, Victor et al. (2018). Double/Debiased Machine Learning for Treatment and Causal Parameters. Econometrics Journal.

[51] Cho, Kyunghyun et al. (2014). On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. EMNLP.

[52] Clarke, Roger, Harindra de Silva, and Steven Thorley (2006). Minimum-Variance Portfolios in the U.S. Equity Market. Journal of Portfolio Management.

[53] Cochrane, John H. (2005). Asset Pricing (Revised Edition). Princeton University Press.

[54] Cochrane, John H. (2011). Presidential Address: Discount Rates. Journal of Finance.

[55] Cochrane, John H., and Monika Piazzesi (2005). Bond Risk Premia. American Economic Review.

[56] Connor, Gregory, and Robert A. Korajczyk (1988). Risk and Return in an Equilibrium APT: Application of a New Test Methodology. Journal of Financial Economics.

[57] Corsi, Fulvio (2009). A Simple Approximate Long-Memory Model of Realized Volatility. Journal of Financial Econometrics.(HAR-RV)

[58] D'Avolio, Gene (2002). The Market for Borrowing Stock. Journal of Financial Economics.

[59] Daniel, Kent, and Sheridan Titman (1997). Evidence on the Characteristics of Cross-Sectional Variation in Stock Returns. Journal of Finance.

[60] De Long, J. Bradford, Andrei Shleifer, Lawrence H. Summers, and Robert J. Waldmann (1990). Noise Trader Risk in Financial Markets. Journal of Political Economy.

[61] De Roon, Frans A., Theo E. Nijman, and Bas J. M. Werker (2001). Testing for Mean–Variance Spanning. Journal of Finance.

[62] DeMiguel, Victor, Lorenzo Garlappi, and Raman Uppal (2009). Optimal versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? Review of Financial Studies.

[63] Diebold, Francis X., and Roberto S. Mariano (1995). Comparing Predictive Accuracy. Journal of Business & Economic Statistics.

[64] Diether, Karl B., Christopher J. Malloy, and Anna Scherbina (2002). Differences of Opinion and the Cross-Section of Stock Returns. Journal of Finance.

[65] Donier, Jonathan, et al. (2015). A Fully Consistent, Minimal Model for Non-linear Market Impact. Quantitative Finance.

[66] Driscoll, John C., and Aart C. Kraay (1998). Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data. Review of Economics and Statistics.

[67] Edelsbrunner, Herbert, and John L. Harer (2010). Computational Topology: An Introduction. American Mathematical Society.

[68] Efron, Bradley, Trevor Hastie, Iain Johnstone, and Robert Tibshirani (2004). Least Angle Regression. Annals of Statistics.

[69] Engle, Robert F. (1982). Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of UK Inflation. Econometrica.

[70] Engle, Robert F., and Victor K. Ng (1993). Measuring and Testing the Impact of News on Volatility. Journal of Finance.

[71] Epstein, Larry G., and Stanley E. Zin (1989). Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework. Econometrica.

[72] Fabozzi, Frank J., Petter N. Kolm, Dessislava Pachamanova, and Sergio M. Focardi (2007). Robust Portfolio Optimization and Management. Wiley.

[73] Fama, Eugene F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. Journal of Finance.

[74] Fama, Eugene F., and James D. MacBeth (1973). Risk, Return, and Equilibrium: Empirical Tests. Journal of Political Economy.

[75] Fama, Eugene F., and Kenneth R. French (1992). The Cross-Section of Expected Stock Returns. Journal of Finance.

[76] Fama, Eugene F., and Kenneth R. French (1993). Common Risk Factors in the Returns on Stocks and Bonds. Journal of Financial Economics.

[77] Fama, Eugene F., and Kenneth R. French (1996). Multifactor Explanations of Asset Pricing Anomalies. Journal of Finance.

[78] Fama, Eugene F., and Kenneth R. French (2004). The Capital Asset Pricing Model: Theory and Evidence. Journal of Economic Perspectives.

[79] Fama, Eugene F., and Kenneth R. French (2015). A Five-Factor Asset Pricing Model. Journal of Financial Economics.

[80] Fama, Eugene F., and Kenneth R. French (2017). International Tests of a Five-Factor Asset Pricing Model. Journal of Financial Economics.

[81] Feng, Guanhao, Stefano Giglio, and Dacheng Xiu (2020). Taming the Factor Zoo: A Test of New Factors. Journal of Finance.

[82] Ferson, Wayne E., and Campbell R. Harvey (1999). Conditioning Variables and the Cross-Section of Stock Returns. Journal of Finance.

[83] Ferson, Wayne E., and Rudi W. Schadt (1996). Measuring Fund Strategy and Performance in Changing Economic Conditions. Journal of Finance.

[84] Feurer, Matthias, et al. (2015). Efficient and Robust Automated Machine Learning. NIPS (NeurIPS).

[85] Frazzini, Andrea, Ronen Israel, and Tobias J. Moskowitz (2018). Trading Costs of Asset Managers. Financial Analysts Journal.

[86] Frazzini, Andrea, and Lasse H. Pedersen (2014). Betting against Beta. Journal of Financial Economics.

[87] Freund, Yoav, and Robert E. Schapire (1997). A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting. Journal of Computer and System Sciences.

[88] Friedman, Jerome H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics.

[89] Gatheral, Jim (2010). No-Dynamic-Arbitrage and Market Impact. Quantitative Finance.

[90] Ghrist, Robert (2008). Barcodes: The Persistent Topology of Data. Bulletin of the American Mathematical Society.

[91] Ghysels, Eric, and others: Mixed Data Sampling (MIDAS) regressions.

[92] Gibbons, Michael R., Stephen A. Ross, and Jay Shanken (1989). A Test of the Efficiency of a Given Portfolio. Journal of Finance.

[93] Goldfarb, Donald, and Garud Iyengar (2003). Robust Portfolio Selection Problems. Mathematics of Operations Research.

[94] Goodman-Bacon, Andrew (2021). Difference-in-Differences with Variation in Treatment Timing. Journal of Econometrics.

[95] Gorton, Gary, and K. Geert Rouwenhorst (2006). Facts and Fantasies about Commodity Futures. Financial Analysts Journal.

[96] Green, Jeremiah, John R. M. Hand, and X. Frank Zhang (2017). The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns. Review of Financial Studies.

[97] Grinold, Richard C., and Ronald N. Kahn (2000/2007). Active Portfolio Management. McGraw-Hill.

[98] Grossman, Sanford J., and Joseph E. Stiglitz (1980). On the Impossibility of Informationally Efficient Markets. American Economic Review.

[99] Gu, Shihao, Bryan Kelly, and Dacheng Xiu (2020). Empirical Asset Pricing via Machine Learning. Review of Financial Studies.

[100] Gupta, Abhinav, and Bryan Kelly (2019). Factor Momentum Everywhere. AQR.

[101] Gârleanu, Nicolae, and Lasse H. Pedersen (2013). Dynamic Trading with Predictable Returns and Transaction Costs. Journal of Finance.

[102] Hamilton, James D. (1994). Time Series Analysis. Princeton University Press.

[103] Hansen, Lars Peter (1982). Large Sample Properties of Generalized Method of Moments Estimators. Econometrica.

[104] Hansen, Lars Peter, John Heaton, and Amir Yaron (1996). Finite-Sample Properties of Some Alternative GMM Estimators. Journal of Business & Economic Statistics.

[105] Hansen, Lars Peter, and Kenneth J. Singleton (1983). Stochastic Consumption, Risk Aversion, and the Temporal Behavior of Asset Returns. Journal of Political Economy.

[106] Hansen, Lars Peter, and Ravi Jagannathan (1991). Implications of Security Market Data for Models of Dynamic Economies. Journal of Political Economy.

[107] Hansen, Lars Peter, and Ravi Jagannathan (1997). Assessing Specification Errors in Stochastic Discount Factor Models. Journal of Finance.

[108] Hansen, Lars Peter, and Robert J. Hodrick (1980). Forward Exchange Rates as Optimal Predictors of Future Spot Rates. Journal of Political Economy.

[109] Hansen, Lars Peter, and Scott F. Richard (1987). The Role of Conditioning Information in Deducing Testable Restrictions Imposed by Dynamic Asset Pricing Models. Econometrica.

[110] Hansen, Peter R. (2005). A Test for Superior Predictive Ability. Journal of Business & Economic Statistics.

[111] Hansen, Peter R., Asger Lunde, and James M. Nason (2011). The Model Confidence Set. Econometrica.

[112] Harvey, Campbell R., Yan Liu, and Heqing Zhu (2016). ... and the Cross-Section of Expected Returns. Review of Financial Studies.

[113] Hasbrouck, Joel (2009). Trading Costs and Returns for U.S. Equities: Estimating Effective Costs from Daily Data. Journal of Finance.

[114] Hastie, Trevor, and Robert Tibshirani (1990). Generalized Additive Models. Chapman & Hall.

[115] He, Guangliang, and Robert Litterman (1999). The Intuition Behind Black–Litterman Model Portfolios. Goldman Sachs Quantitative Resources Group.

[116] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov (2006). Reducing the Dimensionality of Data with Neural Networks. Science.

[117] Hochreiter, Sepp, and Jürgen Schmidhuber (1997). Long Short-Term Memory. Neural Computation.

[118] Hoerl, Arthur E., and Robert W. Kennard (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics.

[119] Hou, Kewei, Chen Xue, and Lu Zhang (2015). Digesting Anomalies: An Investment Approach. Journal of Financial Economics.

[120] Hou, Kewei, Chen Xue, and Lu Zhang (2020). Replicating Anomalies. Review of Financial Studies.

[121] Hou, Kewei, Haitao Mo, Chen Xue, and Lu Zhang (2021). An Augmented q-Factor Model with Expected Growth. Review of Finance.

[122] Hsu, Jason C. (2014). A Framework for Smart Beta. Journal of Index Investing.

[123] Idzorek, Thomas M. (2004). A Step-by-Step Guide to the Black–Litterman Model. Ibbotson Associates.

[124] Imbens, Guido W., and Donald B. Rubin (2015). Causal Inference. Cambridge University Press.

[125] Ingersoll, Jonathan E. (1987). Theory of Financial Decision Making. Rowman & Littlefield.

[126] Jagannathan, Ravi, and Tongshu Ma (2003). Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps. Journal of Finance.

[127] Jagannathan, Ravi, and Zhenyu Wang (1996). The Conditional CAPM and the Cross-Section of Expected Returns. Journal of Finance.

[128] Jegadeesh, Narasimhan, and Sheridan Titman (1993). Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency. Journal of Finance.

[129] Jensen, Michael C. (1968). The Performance of Mutual Funds in the Period 1945–1964. Journal of Finance.

[130] Jiang, Zhengyao, Dixing Xu, and Jinjun Liang (2017). A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem. arXiv.

[131] Jobson, J. D., and Robert M. Korkie (1981). Performance Hypothesis Testing with the Sharpe and Treynor Measures. Journal of Finance.

[132] Jolliffe, Ian (2002). Principal Component Analysis. Springer.

[133] Jorion, Philippe (1986). Bayes-Stein Estimation for Portfolio Analysis. Journal of Financial and Quantitative Analysis.

[134] Kan, Raymond, and Chu Zhang (1999). GMM Tests of Stochastic Discount Factor Models with Large Portfolios. Journal of Finance.

[135] Kan, Raymond, and Guofu Zhou (2007). Optimal Portfolio Choice with Parameter Uncertainty. Journal of Financial and Quantitative Analysis.

[136] Kandel, Shmuel, and Robert F. Stambaugh (1996). On the Predictability of Stock Returns: An Asset-Allocation Perspective. Journal of Finance.

[137] Kelly, Bryan, Seth Pruitt, and Yinan Su (2019). Characteristics Are Covariances: A New Factor Model. Journal of Finance.

[138] Kenneth R. French Data Library. https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

[139] Kingma, Diederik P., and Max Welling (2013). Auto-Encoding Variational Bayes. arXiv.

[140] Kleibergen, Frank, and Richard Paap (2006). Generalized Reduced Rank Tests for the Multivariate Linear Regression Model. Journal of Econometrics.

[141] Koijen, Ralph S. J., Tobias J. Moskowitz, Lasse H. Pedersen, and Evert B. Vrugt (2018). Carry. Journal of Financial Economics.

[142] Korajczyk, Robert A., and Ronnie Sadka (2004). Are Momentum Profits Robust to Trading Costs? Journal of Finance.

[143] Koza, John R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press.

[144] Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh (2018). Interpreting Factor Models. Journal of Finance.

[145] Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh (2019). Shrinking the Cross-Section. Journal of Financial Economics.

[146] Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh (2020). Machine Learning in Asset Pricing. Journal of Financial Economics.

[147] Kritzman, Mark, David Turkington, and Sebastien Page (2010). Principal Components as a Measure of Systemic Risk. Journal of Portfolio Management.

[148] Kyle, Albert S. (1985). Continuous Auctions and Insider Trading. Econometrica.

[149] Laloux, Laurent, Pierre Cizeau, Jean-Philippe Bouchaud, and Marc Potters (1999). Noise Dressing of Financial Correlation Matrices. Physical Review Letters.

[150] Ledoit, Olivier, and Michael Wolf (2004). A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices. Journal of Multivariate Analysis.

[151] Ledoit, Olivier, and Michael Wolf (2008). Robust Performance Hypothesis Testing with the Sharpe Ratio. Journal of Empirical Finance.

[152] Ledoit, Olivier, and Michael Wolf (2012). Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices. Annals of Statistics.

[153] Ledoit, Olivier, and Michael Wolf (2020). Analytical Nonlinear Shrinkage of Large-Dimensional Covariance Matrices. Econometrics and Statistics.

[154] Lee, Jason D. et al. (2016). Exact Post-Selection Inference, with Applications to the Lasso. Annals of Statistics.

[155] Lesmond, David A., Michael J. Schill, and Chunsheng Zhou (2004). The Illusory Nature of Momentum Profits. Journal of Financial Economics.

[156] Lettau, Martin, and Matteo Pelger (2020). Factors That Fit the Cross-Section and Time Series of Stock Returns. Review of Financial Studies.

[157] Lettau, Martin, and Sydney C. Ludvigson (2001). Consumption, Aggregate Wealth, and Expected Stock Returns. Journal of Finance.

[158] Lewellen, Jonathan, Stefan Nagel, and Jay Shanken (2010). A Skeptical Appraisal of Asset Pricing Tests. Journal of Financial Economics.

[159] Li, Lisha, et al. (2017). Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. ICLR.

[160] Lillicrap, Timothy P., et al. (2015). Continuous Control with Deep Reinforcement Learning. arXiv.

[161] Lim, Bryan et al. (2021). Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting. International Journal of Forecasting.

[162] Lintner, John (1965). The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. Review of Economics and Statistics.

[163] Liu, Xiao-Yang et al. (2021). FinRL: Deep Reinforcement Learning Framework to Automate Trading in Quantitative Finance. ACM TIST.

[164] Lo, Andrew W. (2002). The Statistics of Sharpe Ratios. Financial Analysts Journal.

[165] Lou, Dong, and Christopher Polk (2013). Comomentum: Inferring Market-Wide Risk from Cross-Sectional Momentum. Journal of Financial Economics.

[166] Lowe, Ryan, et al. (2017). Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. NeurIPS.

[167] Lundberg, Scott M., and Su-In Lee (2017). A Unified Approach to Interpreting Model Predictions. NeurIPS.

[168] López de Prado, Marcos (2016). Building Diversified Portfolios that Outperform Out-of-Sample. Journal of Portfolio Management.

[169] MacKinnon, James G., and Halbert White (1985). Some Heteroskedasticity-Consistent Covariance Matrix Estimators with Improved Finite Sample Properties. Journal of Econometrics.

[170] Maillard, Sébastien, Thierry Roncalli, and Jérôme Teïletche (2010). The Properties of Equally Weighted Risk Contribution Portfolios. Journal of Portfolio Management.

[171] Markowitz, Harry (1952). Portfolio Selection. Journal of Finance.

[172] McInnes, Leland, John Healy, and James Melville (2018). UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv.

[173] McLean, R. David, and Jeffrey Pontiff (2016). Does Academic Research Destroy Stock Return Predictability? Journal of Finance.

[174] Mehra, Rajnish, and Edward C. Prescott (1985). The Equity Premium: A Puzzle. Journal of Monetary Economics.

[175] Memmel, Christoph (2003). Performance Hypothesis Testing with the Sharpe Ratio. Finance Letters / Finance Research Letters.

[176] Merton, Robert C. (1973). An Intertemporal Capital Asset Pricing Model. Econometrica.

[177] Meucci, Attilio (2009). Managing Diversification. Risk.

[178] Miller, Edward M. (1977). Risk, Uncertainty, and Divergence of Opinion. Journal of Finance.

[179] Mnih, Volodymyr, et al. (2015). Human-level Control through Deep Reinforcement Learning. Nature.

[180] Moody, John, and Matthew Saffell (2001). Learning to Trade via Direct Reinforcement. IEEE Transactions on Neural Networks.

[181] Moskowitz, Tobias J., Yao Hua Ooi, and Lasse H. Pedersen (2012). Time Series Momentum. Journal of Financial Economics.

[182] Mossin, Jan (1966). Equilibrium in a Capital Asset Market. Econometrica.

[183] Nagel, Stefan (2005). Short Sales, Institutional Investors and the Cross-Section of Stock Returns. Journal of Financial Economics.

[184] Newey, Whitney K., and Daniel McFadden (1994). Large Sample Estimation and Hypothesis Testing. Handbook of Econometrics, Vol. 4.

[185] Newey, Whitney K., and Kenneth D. West (1987). A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica.

[186] Nori, Harsha, et al. (2019). Interpretable ML: EBMs. Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society.

[187] Novy-Marx, Robert (2013). The Other Side of Value: The Gross Profitability Premium. Journal of Financial Economics.

[188] Novy-Marx, Robert, and Mihail Velikov (2016). A Taxonomy of Anomalies and their Trading Costs. Review of Financial Studies.

[189] Obizhaeva, Anna, and Jiang Wang (2013). Optimal Trading Strategy and Supply/Demand Dynamics. Journal of Financial Markets.

[190] Pastor, Ľuboš, and Robert F. Stambaugh (2012). On the Size of the Active Management Industry. Journal of Political Economy.

[191] Petersen, Mitchell A. (2009). Estimating Standard Errors in Finance Panel Data. Review of Financial Studies.

[192] Plerou, Vasiliki, Parameswaran Gopikrishnan, Bernd Rosenow, Luís A. Nunes Amaral, and H. Eugene Stanley (2002). Random Matrix Approach to Cross Correlations in Financial Data. Physical Review E.

[193] Polyzotis, N., et al. (2017). Data Management Challenges in Production ML. CIDR.

[194] Pástor, Ľuboš, and Robert F. Stambaugh (2000). Comparing Asset Pricing Models: An Investment Perspective. Journal of Financial Economics.

[195] Pástor, Ľuboš, and Robert F. Stambaugh (2000). Portfolio Selection and Asset Pricing Models. Journal of Finance.

[196] Pástor, Ľuboš, and Robert F. Stambaugh (2003). Liquidity Risk and Expected Stock Returns. Journal of Political Economy.

[197] Ribeiro, Marco T., Sameer Singh, and Carlos Guestrin (2016). “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. KDD.

[198] Ribeiro, Marco T., Sameer Singh, and Carlos Guestrin (2018). Anchors: High-Precision Model-Agnostic Explanations. AAAI.

[199] Romano, Joseph P., and Michael Wolf (2005). Stepwise Multiple Testing as Formalized Data Snooping. Econometrica.

[200] Rosenbaum, Paul R., and Donald B. Rubin (1983). The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika.

[201] Ross, Stephen A. (1976). The Arbitrage Theory of Capital Asset Pricing. Journal of Economic Theory.

[202] Roweis, Sam T., and Lawrence K. Saul (2000). Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science.

[203] Runge, Jakob et al. (2019). Detecting Causal Associations in Large Nonlinear Time Series Datasets. Science Advances.

[204] Schmidt, Michael, and Hod Lipson (2009). Distilling Free-Form Natural Laws from Experimental Data. Science.

[205] Sculley, D., et al. (2015). Hidden Technical Debt in Machine Learning Systems. NIPS.

[206] Sezer, Volkan, and Ahmet Ozbayoglu (2018). Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image. Applied Soft Computing.

[207] Shanken, Jay (1992). On the Estimation of Beta-Pricing Models. Review of Financial Studies.

[208] Sharpe, William F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. Journal of Finance.

[209] Sharpe, William F. (1994). The Sharpe Ratio. Journal of Portfolio Management.

[210] Shleifer, Andrei, and Robert W. Vishny (1997). The Limits of Arbitrage. Journal of Finance.

[211] Singleton, Kenneth J. (2006). Empirical Dynamic Asset Pricing: Model Specification and Econometric Assessment. Princeton University Press.

[212] Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams (2012). Practical Bayesian Optimization of Machine Learning Algorithms. NIPS.

[213] Spirtes, Peter, Clark Glymour, and Richard Scheines (2000). Causation, Prediction, and Search (2nd ed.). MIT Press.

[214] Stambaugh, Robert F., and Yu Yuan (2017). Mispricing Factors. Review of Financial Studies.

[215] Stock, James H., and Mark W. Watson (2002). Forecasting Using Principal Components: Part I. Journal of the American Statistical Association.

[216] Stock, James H., and Motohiro Yogo (2005). Testing for Weak Instruments in Linear IV Regression. Identification and Inference for Econometric Models.

[217] Storey, John D. (2002). A Direct Approach to False Discovery Rates. Journal of the Royal Statistical Society: Series B.

[218] Sun, Liyang, and Sarah Abraham (2021). Estimating Dynamic Treatment Effects in Event Studies with Heterogeneous Treatment Effects. Journal of Econometrics.

[219] Tenenbaum, Joshua B., Vin de Silva, and John C. Langford (2000). A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science.

[220] Thompson, Samuel B. (2011). Simple Formulas for Standard Errors that Cluster by Both Firm and Time. Journal of Financial Economics.

[221] Tibshirani, Robert (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series B.

[222] Timmermann, Allan (2006). Forecast Combinations. In Handbook of Economic Forecasting, Vol. 1. Elsevier.

[223] Tsantekidis, Avraam, et al. (2017). Forecasting Stock Prices from the Limit Order Book using CNNs. IEEE.

[224] Tu, Jun, and Guofu Zhou (2011). Markowitz Meets Talmud: A Combination of Sophisticated and Naive Diversification Strategies. Journal of Financial Economics.

[225] Tóth, Bence, et al. (2011). Anomalous Price Impact and the Critical Nature of Liquidity in Financial Markets. Physical Review X.

[226] Wager, Stefan, and Susan Athey (2018). Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association.

[227] White, Halbert (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica.

[228] White, Halbert (2000). A Reality Check for Data Snooping. Econometrica.

[229] Yang, Yaodong, and Jun Wang (2020). An Overview of Multi-Agent Reinforcement Learning from Game Theoretical Perspective. arXiv.

[230] Zaharia, Matei, et al. (2018). Accelerating the Machine Learning Lifecycle with MLflow. IEEE Data Engineering Bulletin.

[231] Zhang, Cun-Hui, and Stephanie S. Zhang (2014). Confidence Intervals for Low-Dimensional Parameters in High-Dimensional Linear Models. Journal of the Royal Statistical Society: Series B.

[232] Zheng, Xun et al. (2018). DAGs with NO TEARS: Continuous Optimization for Structure Learning. NeurIPS.

[233] Zoph, Barret, and Quoc V. Le (2017). Neural Architecture Search with Reinforcement Learning. ICLR.

[234] Zou, Hui, and Trevor Hastie (2005). Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society: Series B.

[235] van de Geer, Sara et al. (2014). On Asymptotically Optimal Confidence Regions and Tests for High-Dimensional Models. Annals of Statistics.

[236] van der Maaten, Laurens, and Geoffrey Hinton (2008). Visualizing Data using t-SNE. Journal of Machine Learning Research.

留言
avatar-img
留言分享你的想法!
avatar-img
狂徒的沙龍
510會員
109內容數
我喜歡研究和挑戰艱澀的學科,也喜歡用易懂的人話分享知識。
狂徒的沙龍的其他內容
2023/04/29
籃球幾乎人人會打,但是想要打得好、打得有競爭力,又是另外一回事。
Thumbnail
2023/04/29
籃球幾乎人人會打,但是想要打得好、打得有競爭力,又是另外一回事。
Thumbnail
2023/03/28
我會透過本篇文章討論股息策略的陷阱、潛在的獲利原因和各界討論,相信各位讀者朋友看完後,對於「指數型和高
Thumbnail
2023/03/28
我會透過本篇文章討論股息策略的陷阱、潛在的獲利原因和各界討論,相信各位讀者朋友看完後,對於「指數型和高
Thumbnail
2022/10/31
你聽過因子投資嗎? 因子投資就是利用科學手法找出賺錢的因素。
Thumbnail
2022/10/31
你聽過因子投資嗎? 因子投資就是利用科學手法找出賺錢的因素。
Thumbnail
看更多
你可能也想看
Thumbnail
常常被朋友問「哪裡買的?」嗎?透過蝦皮分潤計畫,把日常購物的分享多加一個步驟,就能轉換成現金回饋。門檻低、申請簡單,特別適合學生與上班族,讓零碎時間也能創造小確幸。
Thumbnail
常常被朋友問「哪裡買的?」嗎?透過蝦皮分潤計畫,把日常購物的分享多加一個步驟,就能轉換成現金回饋。門檻低、申請簡單,特別適合學生與上班族,讓零碎時間也能創造小確幸。
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News