CNN

更新於 發佈於 閱讀時間約 1 分鐘

卷積神經網路(CNN)是一種深度學習模型,擅長處理圖像數據。透過卷積層提取特徵,池化層降維,並結合全連接層進行分類或預測。其特點包括參數共享、空間不變性,適用於圖像分類、目標檢測等多種任務。經典模型有LeNet、AlexNet、VGG、ResNet等。簡單高效,廣泛應用於AI領域。


raw-image



留言
avatar-img
留言分享你的想法!
avatar-img
Princend的沙龍
0會員
34內容數
Princend的沙龍的其他內容
2025/01/26
這本書旨在幫助創作者分享他們的過程並與受眾建立聯繫,而非僅僅是推銷自己。 ## 第一章:你不需要是個天才 * **創造力不只是天賦,而是一種運作方式** 。 * 不要相信「孤獨的天才」神話,偉大的作品往往來自於一個互相支持、彼此學習的「群體」(**scenius**)
Thumbnail
2025/01/26
這本書旨在幫助創作者分享他們的過程並與受眾建立聯繫,而非僅僅是推銷自己。 ## 第一章:你不需要是個天才 * **創造力不只是天賦,而是一種運作方式** 。 * 不要相信「孤獨的天才」神話,偉大的作品往往來自於一個互相支持、彼此學習的「群體」(**scenius**)
Thumbnail
2024/12/31
今年嘗試往不同領域去學習 甚至裸辭參加AI職訓班 雖然成長的幅度沒有想像的那麼好 但是至少是有成長的 期待未來的我 能夠持續學習 達到心中所想的目標
Thumbnail
2024/12/31
今年嘗試往不同領域去學習 甚至裸辭參加AI職訓班 雖然成長的幅度沒有想像的那麼好 但是至少是有成長的 期待未來的我 能夠持續學習 達到心中所想的目標
Thumbnail
2024/12/25
馬可夫鍊(Markov Chain) 是一種數學模型,用來描述一個系統在不同狀態之間的轉移過程,特點是未來的狀態只取決於當前狀態,而與過去的狀態無關。這種性質稱為馬可夫性質,即「無記憶性」。馬可夫鍊常用於統計學、機器學習、經濟學、生物學等領域。
Thumbnail
2024/12/25
馬可夫鍊(Markov Chain) 是一種數學模型,用來描述一個系統在不同狀態之間的轉移過程,特點是未來的狀態只取決於當前狀態,而與過去的狀態無關。這種性質稱為馬可夫性質,即「無記憶性」。馬可夫鍊常用於統計學、機器學習、經濟學、生物學等領域。
Thumbnail
看更多