markov chain 馬可夫鍊

markov chain 馬可夫鍊

更新於 發佈於 閱讀時間約 1 分鐘

馬可夫鍊(Markov Chain) 是一種數學模型,用來描述一個系統在不同狀態之間的轉移過程,特點是未來的狀態只取決於當前狀態,而與過去的狀態無關。這種性質稱為馬可夫性質,即「無記憶性」。馬可夫鍊常用於統計學、機器學習、經濟學、生物學等領域。

raw-image


avatar-img
Princend的沙龍
0會員
34內容數
留言
avatar-img
留言分享你的想法!
Princend的沙龍 的其他內容
這本書旨在幫助創作者分享他們的過程並與受眾建立聯繫,而非僅僅是推銷自己。 ## 第一章:你不需要是個天才 * **創造力不只是天賦,而是一種運作方式** 。 * 不要相信「孤獨的天才」神話,偉大的作品往往來自於一個互相支持、彼此學習的「群體」(**scenius**)
今年嘗試往不同領域去學習 甚至裸辭參加AI職訓班 雖然成長的幅度沒有想像的那麼好 但是至少是有成長的 期待未來的我 能夠持續學習 達到心中所想的目標
Autoencoder 是一種無監督學習的神經網絡,分為編碼器(將數據壓縮為隱藏表示)和解碼器(將隱藏表示重建為原始數據)。其目標是最小化輸入和重建數據之間的誤差,廣泛應用於數據降維、特徵提取、去噪和生成模型(如變分自編碼器 VAE)。優點包括無需標籤學習和自動學習特徵,但也容易過擬合,需要大量數據
這本書旨在幫助創作者分享他們的過程並與受眾建立聯繫,而非僅僅是推銷自己。 ## 第一章:你不需要是個天才 * **創造力不只是天賦,而是一種運作方式** 。 * 不要相信「孤獨的天才」神話,偉大的作品往往來自於一個互相支持、彼此學習的「群體」(**scenius**)
今年嘗試往不同領域去學習 甚至裸辭參加AI職訓班 雖然成長的幅度沒有想像的那麼好 但是至少是有成長的 期待未來的我 能夠持續學習 達到心中所想的目標
Autoencoder 是一種無監督學習的神經網絡,分為編碼器(將數據壓縮為隱藏表示)和解碼器(將隱藏表示重建為原始數據)。其目標是最小化輸入和重建數據之間的誤差,廣泛應用於數據降維、特徵提取、去噪和生成模型(如變分自編碼器 VAE)。優點包括無需標籤學習和自動學習特徵,但也容易過擬合,需要大量數據