Not yet dead end... Neutrino Oscillation (I)

更新 發佈閱讀 13 分鐘

In 1998, at SuperK experiment, we confirmed the fact that neutrinos oscillate, which means the flavour of neutrino changes according its energy and travel distance. The flavour of neutrinos is about which kind of charged lepton we observe in the detector when it interacts with the detector material. The flavour of neutrinos can be electron neutrinos, muon neutrinos, and tauon neutrinos. Of course, they have their anti particles. The anti neutrinos interact with detector material with the daughter particle, which is just the CP conjugate particle to that for neutrinos, e.g. after an electron neutrino interact with material, an electron goes out; then an anti electron neutrino generates an anti electron (which we call 'positron').

The neutrino oscillations are the aftermath of the neutrino mixing and the non-equal mass size of neutrinos. The neutrino mixing is the mismatch between neutrino flavour states and neutrino mass states, which are the eigenstates when neutrino travel in vacuum. Neutrino mixing is described by a 3-time-3 matrix. Usually, we use PMNS parametrisation to describe it with 3 mixing angles: theta12 𝜃₁₂, theta13 (𝜃₁₃) and theta23 (𝜃₂₃), and a Dirac CP phase: delta (𝛿). The non-equal mass size bring the phase difference of the plane wave between any two of mass states. These phase differences are characterised by the mass-square differences: the 21 mass-square difference (𝝙m²₂₁) and the 31 mass-square difference (𝝙m²₃₁), the mass square difference between the 2 and 1 mass states and between the 3 and 1 mass states, respectively. So far we well understand the value of 𝜃₁₂, 𝜃₁₃, 𝝙m²₂₁. Some problems left are the sign of 𝝙m²₃₁ (𝝙m²₃₁>0 or 𝝙m²₃₁<0), if 𝜃₂₃ is larger or smaller than 45º, if CP is violated in neutrino sector, and if CP is really violated, what the value of 𝛿 is. The first of three problems will be resolved by the next generation experiments, like JUNO, DUNE and T2HK...etc. However, the uncertainty of 𝛿 will not satisfy us.

We will not talk about 1𝞂 any more. If we set the aim that we need the precision of leptonic mixing as how we have done in the quark sector. Then, probably we need to talk the precision at 90% C.L. at least. In the prediction, we expect the precision of 1𝞂 precision for 𝛿 is about 10-15º, depending on what the true value of 𝛿 is. It is much poorer for the higher statistics sensitivity. This expectation is equilibrium to 10% for the 1𝞂 precision for 𝛿, which is similar to what we have for the other parameters right now. These precision level is of course far from 0.1% at . If in quark sector, we cannot find new physics at such precision level, in the parallel it is hard to find any new physics in the present precision for neutrino sector.

We have used twenty years to complete the knowledge of neutrino oscillations. We almost have a complete understanding on neutrino oscillations. By far, it is less possible to measure all parameters in only one neutrino oscillation parameters. This is mainly because of the uncertainty, for example the energy resolution, etc. In the other word, we need multiple experiments to complete the picture of neutrino oscillations. Combining analysis with the published data then pictures it out. These combine analysis are call 'the global fit'. There are several 'the global fit' groups, for example, nufit, etc. Though comparing results from different groups can be a cross check, experimental details affects the final results. These global-fit working group do not belong to any experiments. As a result, the working members can only reproduce the experimental result by released data with proper but not precise assumption. How big the systematics is is question, while we are tracing for the high precision.

Except for the uncertainty control, the multi-channel strategy is also required for measuring all parameters in one experiment. In that sense, we need the neutrino beam contains more then one flavour and good ability of flavour separation for the detector. We may need more than one detectors, depending on the neutrino beam energy. This beam design can be realised by the proposed muon-decay facility projects, such as neutrino factory, NuSTORM, and MOMENT, etc. These configurations are aiming to produce clean electron- and muon-flavour neutrino beams with high intensity without contamination from the meson decay. Furthermore, these experiments will not only work for neutrino physics, but also be a pavement for muon colliders.

Next generation oscillation experiments, DUNE, T2HK, JUNO of course will extend our knowledge of neutrino oscillation physics. But after then? Surely, muon-decay facilities will be told. It will be a long way to see it's launching, especially if we stop and are fully satisfied by the old-fashioned techniques.

留言
avatar-img
留言分享你的想法!
avatar-img
李稞生 的沙龍
9會員
74內容數
把大象放進冰箱的步驟有三個。成為懶人的步驟永遠都沒有
李稞生 的沙龍的其他內容
2024/03/31
由於大型語言模型的流行,「zero shot」這個詞彙時常出現在開發人員之中。或許不久也會在投資方、消費者眼前。
Thumbnail
2024/03/31
由於大型語言模型的流行,「zero shot」這個詞彙時常出現在開發人員之中。或許不久也會在投資方、消費者眼前。
Thumbnail
2024/03/08
那些無法被聽見的吶喊,全部被寫進標點符號了。 然後被十五秒的影片蓋上,遺落在某個網路空間了 那些無法被聽見的吶喊,從前被忽略, 接著被借力使力,現在仍舊沈默著 腦海中只剩下咆哮、怒吼以及每十五秒一個的笑點, 看似娛樂性十足,一切輕描淡寫 那些吶喊,沒有被聽見了 從來沒有被遺忘過,只是不
Thumbnail
2024/03/08
那些無法被聽見的吶喊,全部被寫進標點符號了。 然後被十五秒的影片蓋上,遺落在某個網路空間了 那些無法被聽見的吶喊,從前被忽略, 接著被借力使力,現在仍舊沈默著 腦海中只剩下咆哮、怒吼以及每十五秒一個的笑點, 看似娛樂性十足,一切輕描淡寫 那些吶喊,沒有被聽見了 從來沒有被遺忘過,只是不
Thumbnail
2023/10/28
Edge AI從現在大家對AI的理解來看,實在很廢。只是預測或是簡單的系統控制。但重點這些簡單的預測跟控制其實讓我們生活便利很多。像是電器感知空間的舒適度進而調整空調模式,甚至開關空調。生活中我們充斥著大大小小這類的判斷。我們花在判斷的時間越多。我們可以做選擇的時間越少。反之亦然。一旦將簡單的選擇外
Thumbnail
2023/10/28
Edge AI從現在大家對AI的理解來看,實在很廢。只是預測或是簡單的系統控制。但重點這些簡單的預測跟控制其實讓我們生活便利很多。像是電器感知空間的舒適度進而調整空調模式,甚至開關空調。生活中我們充斥著大大小小這類的判斷。我們花在判斷的時間越多。我們可以做選擇的時間越少。反之亦然。一旦將簡單的選擇外
Thumbnail
看更多
你可能也想看
Thumbnail
根據熱力學熵增鐵律,多數人認為宇宙會最終會進入熱寂(亂度散度最大化),然後死去,但事實或許不然,一年有四季,日昇日落,大自然注定是生生不息,循環往復的,有鑑於近來大量閱讀AI關於模型與映射的概念,突然靈光乍現,想出了一套能讓宇宙生生不息的假說,讓我們一起來逐步論證!
Thumbnail
根據熱力學熵增鐵律,多數人認為宇宙會最終會進入熱寂(亂度散度最大化),然後死去,但事實或許不然,一年有四季,日昇日落,大自然注定是生生不息,循環往復的,有鑑於近來大量閱讀AI關於模型與映射的概念,突然靈光乍現,想出了一套能讓宇宙生生不息的假說,讓我們一起來逐步論證!
Thumbnail
一項可能引發爭議的新研究顯示,宇宙的膨脹可能是一種幻想。這種對宇宙的重新思考還暗示,暗能量和暗物質之謎有望被解開。科學家認為,暗能量和暗物質佔宇宙能量和物質總量的約95%,但這兩者至今仍是未解之謎。
Thumbnail
一項可能引發爭議的新研究顯示,宇宙的膨脹可能是一種幻想。這種對宇宙的重新思考還暗示,暗能量和暗物質之謎有望被解開。科學家認為,暗能量和暗物質佔宇宙能量和物質總量的約95%,但這兩者至今仍是未解之謎。
Thumbnail
很多人總是認為學物理的人,大概是來自火星。學生也好,朋友也罷。當我介紹自己,念物理,教物理,初次見面的朋友們,第一個反應往往如此 我想,這應該是大家對於物理的霧裡與誤理 怎麼說? 物理不是只有公式...
Thumbnail
很多人總是認為學物理的人,大概是來自火星。學生也好,朋友也罷。當我介紹自己,念物理,教物理,初次見面的朋友們,第一個反應往往如此 我想,這應該是大家對於物理的霧裡與誤理 怎麼說? 物理不是只有公式...
Thumbnail
對200年前的人來說,時間與空間的獨立性是絕對的; 對這一代的我們來說,只要稍稍接觸過科普書籍大多都聽過相對論一詞,更進階者也聽過速度越快時間越慢的概念; 而對下一代的孩子們呢?這些概念是否比我們當時還要深入日常生活的各種角落?以各種影音、作品、日常語彙展現出來?
Thumbnail
對200年前的人來說,時間與空間的獨立性是絕對的; 對這一代的我們來說,只要稍稍接觸過科普書籍大多都聽過相對論一詞,更進階者也聽過速度越快時間越慢的概念; 而對下一代的孩子們呢?這些概念是否比我們當時還要深入日常生活的各種角落?以各種影音、作品、日常語彙展現出來?
Thumbnail
大家應該都有聽過量子力學 它是近幾年滿熱門的一個學科,同時在身心靈界也是超級熱門的題材 2022年十月的諾貝爾物理獎也是由三位研究量子力學的科學家共同獲得 簡單說一下量子力學是研究微觀世界的物理現象 這個概念其實很久以前就提出來了 但它跟一般我們認知的物理現象差別實在是太大了,有些時候卻反而更偏向玄
Thumbnail
大家應該都有聽過量子力學 它是近幾年滿熱門的一個學科,同時在身心靈界也是超級熱門的題材 2022年十月的諾貝爾物理獎也是由三位研究量子力學的科學家共同獲得 簡單說一下量子力學是研究微觀世界的物理現象 這個概念其實很久以前就提出來了 但它跟一般我們認知的物理現象差別實在是太大了,有些時候卻反而更偏向玄
Thumbnail
黑洞是極端強大、足以扭曲時空的重力所形成的區域。 而如果,把這個扭曲時空的概念放到聲音上會是什麼樣呢? Collision Devices給了我們答案。
Thumbnail
黑洞是極端強大、足以扭曲時空的重力所形成的區域。 而如果,把這個扭曲時空的概念放到聲音上會是什麼樣呢? Collision Devices給了我們答案。
Thumbnail
之前的文章聊到恆星與行星在分子雲中的形成過程,基本上如何界定恆星是否正是生成?就是當原恆星的核心溫度超過一千萬度時,足以觸發核心的氫原子發生核融合反應而產生光與熱的時候,就判定該恆星正式生成,那什麼是核融合反應呢? 淺談核反應 恆星進入主序帶的核融合
Thumbnail
之前的文章聊到恆星與行星在分子雲中的形成過程,基本上如何界定恆星是否正是生成?就是當原恆星的核心溫度超過一千萬度時,足以觸發核心的氫原子發生核融合反應而產生光與熱的時候,就判定該恆星正式生成,那什麼是核融合反應呢? 淺談核反應 恆星進入主序帶的核融合
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News