【5G】手機頻寬 : Sub-6GHz(厘米波) VS. mmWave(毫米波)

閱讀時間約 6 分鐘
■手機天線基本原理
■5G 關鍵技術
1.毫米波(mmWave)
2.QAM 四象限振幅調變 (又稱正交振幅調變)
3. 毫米波(mmWave)波束成形(Beamforming)天線技術
5G手機通訊使用頻寬分兩大派別:Sub-6GHz與mmWave,其主要差異如下表
基地台覆蓋區大小可圖是如下:
【視頻】How does an Antenna work? | ICT #4
■毫米波 (mmWave)
5G NR (New Radio) 波段
毫米波頻率並非僅僅稍高一點,其頻率甚至超過 24GHz。
優點 : 毫米波有很大的頻寬, 5G 毫米波的頻寬是 24.5GHz 到 28.35GHz,
所以頻寬接近 4GHz,容量是 4G 的 10 倍。
缺點 : 毫米波實在太容易受到影響而產生衰減。對毫米波產生影響的事物很多,
其中尤以毫米波無法在建築物外給建築物內部提供服務。
在設計手機時,因為手持方式,還要耗去不少天線。不僅如此,
空氣(實際上是氧氣)對毫米波產生的衰減作用也非常大,
以至於毫米波的傳播範圍受限於 200-300 米(約 700-1000ft)。
所以,每隔 200m 左右就需要修建基地台小型基地台。
■QAM 四象限振幅調變(又稱正交振幅調變)
●電磁波調變種類
● QAM (Quadrature Amplitude Modulation)
是一種在兩個正交載波上進行振幅調變的調變方式。
這兩個載波通常是相位差為90度(π/2)的正弦波,因此被稱作正交載波。
QAM可以有4QAM、16QAM(4bit/symbol)、64QAM(6bit/symbol)、256QAM(8bit/symbol)、1024QAM(10bit/symbol)等調變方式
【視頻】電磁波調變原理
●16 QAM 調變技術的基本原理
16 QPSK是利用 PSK 和 ASK 混合調變技術,下圖 (a) 為每一筆訊號之向量圖,如果以零角度為 cos 座標,900 度為 sin 座標,各筆訊號的四象限位置如 下圖(b) 所示。
但 QAM 的調變技術在製作上與 QPSK 有點不同,它是以反方向製作,原理如下說明:依照三角函數計算,PSK 和 ASK 混合調變後訊號,都可以轉換成 sin 和 cos 的函數訊號的合成:(A 和θ 是變化性的)
Acos(2πfCt + θ) = A1cos(2πfCt) + A2 sin(2πfCt)
因此,在 QAM 的調變技術之中,我們可以取某些位元由 A1cos(2πfCt) 來表示,以變化不同的 A1 表示位元資料,另一方面,某些位元由 A2 sin(2πfCt) 表示,也是變化不同的 A2 表示各種資料。再將兩序列的訊號混合起來(A1cos(2πfCt) + A2 sin(2πfCt)),就成為 QAM 調變訊號。製作方式如下圖 (a) 所示,首先將輸入之位元分為 X、Y 兩群,X 值用 cosine 波形調變,成為 I(In-phase)分支訊號;而 Y 值用 sine 波形調變,成為 Q(Quadrature)分支訊號,兩分支訊號再混合而成,也因此稱之為『四象限振幅調變』(QAM)。下圖 (b) 為 16-QAM 之四象限座標圖。
摘自 http://www.tsnien.idv.tw/Network_WebBook/chap14/14-6%20ADSL%20調變技術.html
●QAM 調變技術與 WiFi 的演進
■毫米波波束成形(Beamforming)天線種類
1.全像式波束成形(Holographic Beamforming, HBF)天線
2. 相位陣列天線
3. MIMO/massive MIMO天線
【TIPS】MIMO = Multiple-input Multiple-output 多輸入多輸出
●大規模多輸入多輸出(massive MIMO)天線
5G手機和基地台(Femtocell)都需要大量波束成形(Beamforming)的MIMO天線
Massive MIMO天線採用貼方式製作,是一種微帶貼片天線( Microstrip Patch Antenna)
●MIMO貼片天線構造
5G 毫米波天線陣列一般是基於相控陣的方式,具體實現方式又可以分爲 AoB (Antenna on Board,天線陣列位於系統主板上)、AiP (Antenna in Package,天線陣列位於芯片的封裝內),與 AiM (Antenna in Module,天線陣列與 RFIC 形成一模組)三種。目前 AiM 方式爲業界普遍接受。
典型MIMO天線,由64個RFIC、256個雙極化天線組成,如下圖
■手機的毫米波天線
多個mmWave天線模塊(如QTM052和QTM525)位於不同的位置,
如下圖所示。基帶調製解調器根據最強信號的來源在天線模塊之間切換。
所有這些都是在一毫秒的時間內實時發生的。
【TIPS】手機天線使用的製程雷刻成型有LCT及LDS兩種
LDS (Laser Direct Structuring) ,LCT ((Laser Circuit Technology)
每個毫米波子陣列目前使用四個雙極化貼片天線,每個天線都有一個發射/接收
開關、低雜訊放大器(LNA)和功率放大器(PA),使用RF-SOI緊密集成。
每個放大器只能輸出大約15 dBm的線性功率,因此可以使用多達8個天線
來達到20 dBm以上的EIRP水準
■基地台密度與手機輻射之關係
手機的輻射強度與基地台信號強度密切相關。
【基地台輻射計算例】
假設基地台的發射功率是40W,天線增益15dBi,你站在距離基地台50米遠處,
基地台高約30米,那麼受到的輻射大約是多少?
因mW = 10^(dBm/10) ,所以 15 dBm = 10^(15/10) = 31 mW
距離基地台50米遠時, 功率密度=(40*31)/(4*3.14*50^2)=0.04 W/m2。
距離基地台10米遠時,功率密度=(40*31)/(4*3.14*10^2)=1 W/m2。
如果你再往塔下走,雖然距離近了,輻射較小,但是你可能落入天線副瓣,。
●基地台的密度越大、功率越小、輻射越低 ;
離基地台越遠,基地台信號就越弱,手機發射的功率會越大。
就好比兩個人說話,距離越遠,越要大聲叫喊;距離越近,越能小聲說話。
所以,基地台的密度越大,手機接收的信號越強,手機的輻射也相應減少。
即將進入廣告,捲動後可繼續閱讀
為什麼會看到廣告
    avatar-img
    76會員
    124內容數
    1.占星軟體及運用 2.各種推運法(Transit / 次限 / 主限 / Solar Arc / 法達星限 / 中點占星等)
    留言0
    查看全部
    avatar-img
    發表第一個留言支持創作者!
    跨元探索的沙龍 的其他內容
    【TIPS】 每個人的手機天線要傳送出去的數位訊號 0 與 1 都變成不同波形的 電磁波,問題來了,這麼多不同波形的電磁波丟到空中,該如何區分 USER 呢? 就是用多工技術(TDMA、FDMA、CDMA、OFDM):將電磁波區分給 不同的使用者使用。 ■多重路徑載波對信號傳遞的影響 ●ZP-補零
    ■無線網路的技術可分為二大類 ●利用光傳輸 1.紅外線(IR, infra-ray) 2.雷射(Laser) ●無線電波傳輸 1.載頻微波(Microwave) 2.直接序列擴頻 (DSSS, Direct Sequence Spread Spectrum) 4.HomeRF ■ISM頻段
    ■信號調變的種類 ●類比信號調變的種類 1. AM 2. FM 3. PM ●數位信號調變的種類 數位信號調變種類有下列幾種 ■Quadrature信號 (兩個正交的IQ 信號) ●任何信號都可描述為 V(t) = A * sin (2 * π * f * t + Ф) f: 頻率 t: 時間
    【TIPS】 每個人的手機天線要傳送出去的數位訊號 0 與 1 都變成不同波形的 電磁波,問題來了,這麼多不同波形的電磁波丟到空中,該如何區分 USER 呢? 就是用多工技術(TDMA、FDMA、CDMA、OFDM):將電磁波區分給 不同的使用者使用。 ■多重路徑載波對信號傳遞的影響 ●ZP-補零
    ■無線網路的技術可分為二大類 ●利用光傳輸 1.紅外線(IR, infra-ray) 2.雷射(Laser) ●無線電波傳輸 1.載頻微波(Microwave) 2.直接序列擴頻 (DSSS, Direct Sequence Spread Spectrum) 4.HomeRF ■ISM頻段
    ■信號調變的種類 ●類比信號調變的種類 1. AM 2. FM 3. PM ●數位信號調變的種類 數位信號調變種類有下列幾種 ■Quadrature信號 (兩個正交的IQ 信號) ●任何信號都可描述為 V(t) = A * sin (2 * π * f * t + Ф) f: 頻率 t: 時間
    你可能也想看
    Google News 追蹤
    Thumbnail
    嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
    5G,即第五代移動通訊技術,是繼4G之後的最新一代無線網路技術。自2019年開始商用以來,5G正在迅速改變我們的生活方式和工作模式。 更快的速度,更低的延遲 5G最顯著的特點是其驚人的速度和低延遲。理論上,5G的下載速度可達到20Gbps,比4G快出100倍。這意味著您可以在幾秒鐘內下載
    Thumbnail
    電量接受倍增線。 太陽能、風力。是1:1的經過管線,那如果是1:5呢? 管線材質和設計,看看哪種方案能達到最高的能量轉換效率,同時又能確保安全性。 能量倍增的技術應用在太陽能和風力發電系統上,那將會大大提升再生能源的整體效率。 就好比沒換過的裡面,結構與線的太陽能板與換成倍增線的。 效果
    Thumbnail
    5G technology represents the fifth generation of mobile network technology, succeeding 4G.
    Thumbnail
    4G吃到飽常見方案有哪些? 申辦 4G 吃到飽時的重點考量 在當今資訊化的社會中,4G 吃到飽方案受到許多人的關注,因為我們依賴手機隨時隨地上網查資訊、聽音樂、看影片和玩遊戲。為了滿足日常生活或工作需求,用戶通常關注以下幾點: 網速穩定度:確保網速在高峰期或網路壅塞時仍保持穩定,避免網速下降或...
    Thumbnail
    The advent of 5G technology marks a transformative era for digital communication, offering unprecedented speeds and reliability.
    Thumbnail
    儘管 5G 技術還在發展和部署階段,但科技公司和無線通訊產業已著手開始發展更先進的 6G 數據技術,取代 5G,來滿足未來更快速、更可靠、更智能的無線通訊需求。下一代 6G 技術可能比 5G 快 100 倍,在速度方面顯著提升。同時 6G 允許設備、消費者和周圍環境之間進行更深層次的整合與即時通訊。
    日前,马来西亚电信公司Maxis(明讯)与华为成功进行了东南亚地区首次5G-Advanced技术试验。该试验名为“5G-Advanced试验展示”,在现场对其进行了速度测试,速度峰值达到8Gbps。 该活动由马来西亚通讯及数码部(KKMM)部长Yang Berhormat Fahmi Fadzil
    中國移動宣布成功研發了國內首款商用可重構5G射頻收發晶片,有效提升了我國5G網路核心設備的自主可控性。 射頻收發晶片是5G基地台的核心組件,長期以來一直由國外壟斷,被稱為5G基地台上的"明珠"。 這款名為"破風8676"的晶片採用可重構架構設計,可重新配置晶片核心規格參數、模組演算法和功能,有助於一
    Thumbnail
    嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
    5G,即第五代移動通訊技術,是繼4G之後的最新一代無線網路技術。自2019年開始商用以來,5G正在迅速改變我們的生活方式和工作模式。 更快的速度,更低的延遲 5G最顯著的特點是其驚人的速度和低延遲。理論上,5G的下載速度可達到20Gbps,比4G快出100倍。這意味著您可以在幾秒鐘內下載
    Thumbnail
    電量接受倍增線。 太陽能、風力。是1:1的經過管線,那如果是1:5呢? 管線材質和設計,看看哪種方案能達到最高的能量轉換效率,同時又能確保安全性。 能量倍增的技術應用在太陽能和風力發電系統上,那將會大大提升再生能源的整體效率。 就好比沒換過的裡面,結構與線的太陽能板與換成倍增線的。 效果
    Thumbnail
    5G technology represents the fifth generation of mobile network technology, succeeding 4G.
    Thumbnail
    4G吃到飽常見方案有哪些? 申辦 4G 吃到飽時的重點考量 在當今資訊化的社會中,4G 吃到飽方案受到許多人的關注,因為我們依賴手機隨時隨地上網查資訊、聽音樂、看影片和玩遊戲。為了滿足日常生活或工作需求,用戶通常關注以下幾點: 網速穩定度:確保網速在高峰期或網路壅塞時仍保持穩定,避免網速下降或...
    Thumbnail
    The advent of 5G technology marks a transformative era for digital communication, offering unprecedented speeds and reliability.
    Thumbnail
    儘管 5G 技術還在發展和部署階段,但科技公司和無線通訊產業已著手開始發展更先進的 6G 數據技術,取代 5G,來滿足未來更快速、更可靠、更智能的無線通訊需求。下一代 6G 技術可能比 5G 快 100 倍,在速度方面顯著提升。同時 6G 允許設備、消費者和周圍環境之間進行更深層次的整合與即時通訊。
    日前,马来西亚电信公司Maxis(明讯)与华为成功进行了东南亚地区首次5G-Advanced技术试验。该试验名为“5G-Advanced试验展示”,在现场对其进行了速度测试,速度峰值达到8Gbps。 该活动由马来西亚通讯及数码部(KKMM)部长Yang Berhormat Fahmi Fadzil
    中國移動宣布成功研發了國內首款商用可重構5G射頻收發晶片,有效提升了我國5G網路核心設備的自主可控性。 射頻收發晶片是5G基地台的核心組件,長期以來一直由國外壟斷,被稱為5G基地台上的"明珠"。 這款名為"破風8676"的晶片採用可重構架構設計,可重新配置晶片核心規格參數、模組演算法和功能,有助於一