【自然語言處理 — 概念篇】最基礎的Bag-of-Words模型是什麼呢?

更新於 發佈於 閱讀時間約 7 分鐘
常常我們在進行NLP討論時,不管哪一種NLP任務都會偶爾聽到BOW這個詞,原來全名就是「Bag-of-words」由名稱就可以知道這是在處理NLP任務之前的基礎工事,將一整篇文章切碎成一段語句,甚至是最小單位的「詞」,而這些詞又如何表述關係或者進一步的使用,試圖讓機器可以理解我們人類的詞語,就是基於BOW發展而來的。
既然是進入NLP世界的基礎,那我們就不得不來仔細了解一番,為什麼會有此命名呢? 轉譯成中文又可以稱為「詞袋」,就想像成專門裝各類糖果的袋子,每一種糖果可能會重複出現幾次,那麼在袋中的糖果,將各種不同種類統計之後,就能夠得出哪些糖果甚至進一步分這些糖果的種類(軟、硬糖...),而詞也是同樣的道理,統計出詞頻、詞的特徵,進一步分析出這段語句中可能帶有哪些情緒(正向、負向...),基本上就是透過一套演算法或資料結構幫我們進行前處理,以利後續的NLP任務進行。

BOW的處理過程

  1. 建構詞彙表: 將袋中的詞整理成一張表,這張表涵蓋了所有的詞。
  2. 標示特徵向量: 使用詞彙表的單詞做為特徵,建構一個特徵向量,維度與詞彙表的大小相同。
  3. 特徵表示應用: 將特徵向量應用於具體的NLP任務,如文本分類、情感分析、信息檢索等。這些特徵向量可以作為機器學習算法的輸入。
需要注意的是, BoW方法忽略了單詞的順序和語義信息, 只能說它的工法是讓機器讀懂我們語言的第一工序, 後續發展的NLP、機器學習都離不開BOW的影子, 後來也逐漸發現單純的BOW能看到的資訊並不多, 因此也衍生了後續的進階文本表示方法(TF-IDF、Word2Vec、BERT…等)。

不如動手做做看吧

安裝套件

  • scikit-learn:用於機器學習的Python套件, 擅長分類、回歸、聚類、降維、模型選擇和預處理等機器學習任務的工具和算法。
  • pandas: 對矩陣進行表格的處理。
  • jieba: 斷詞, 對中文進行分詞。
!pip install scikit-learn

!pip install pandas

!pip install jieba

下載中文字型讓圖表可以顯示中文

import matplotlib as mpl
import matplotlib.font_manager as fm
import matplotlib.pyplot as plt

# 下載繁體中文字型
!wget -O SourceHanSerifTW-VF.ttf https://github.com/adobe-fonts/source-han-serif/raw/release/Variable/TTF/Subset/SourceHanSerifTW-VF.ttf

# 加入字型檔
fm.fontManager.addfont('SourceHanSerifTW-VF.ttf')

# 設定字型
#
mpl.rc('font', family='Source Han Serif TW VF')

定義文本數據集以及對應的標籤

這個步驟主要將我們需要進行處理的文本進行一維陣列的儲存,並且假設我們已經斷詞完畢。
corpus = [
"我喜歡吃水果",
"他喜歡喝咖啡",
"我喜歡漫畫書",
"他喜歡看電影"
]

自訂分詞器

以jieba進行
import jieba
def tokenizer(text):
return list(jieba.cut(text))th

轉換成特徵向量

指定自訂的斷詞器
from sklearn.feature_extraction.text import CountVectorizer

# 創建 BOW 特徵提取器
vectorizer = CountVectorizer(tokenizer=tokenizer)

# 通過 BOW 特徵提取器將文本轉換為特徵向量
features = vectorizer.fit_transform(corpus)

檢視詞彙表

feature_names = vectorizer.get_feature_names_out()
feature_names

# array(['他', '吃水果', '喜歡', '喝咖啡', '我', '書', '漫畫', '看', '電影'], dtype=object)

檢視特徵向量

print(features.toarray())

[[0 1 1 0 1 0 0 0 0]
[1 0 1 1 0 0 0 0 0]
[0 0 1 0 1 1 1 0 0]
[1 0 1 0 0 0 0 1 1]]

藉由pandas進行表格呈現

import pandas as pd
df = pd.DataFrame(features.toarray(), columns=feature_names)
df

繪製詞頻圖

import matplotlib.pyplot as plt
# 計算每個詞彙在所有句子中的總頻率
word_frequencies = features.sum(axis=0).A1

# 建立圖形
plt.figure(figsize=(10, 6))
plt.bar(range(len(feature_names)), word_frequencies)
plt.xticks(range(len(feature_names)), feature_names, rotation=45, fontsize=8)
plt.xlabel('詞彙')
plt.ylabel('頻率')
plt.title('詞彙頻率圖')

# 顯示圖形
plt.show()
今天的範例都在這裡「📦 bow.ipynb」歡迎自行取用。

結語

原來BOW的概念如此簡單,我們常常被華麗的名詞給阻礙了前進的動力,仔細拆解每一個步驟之後才知道原來我們日常生活中的詞語,要讓機器讀懂也是不容易的,但動手實作之後,將每一步記錄起來,並重複學習就不是那麼困難了,讓我們持續學習NLP的技術吧! 下一章我們將來談談詞的向量與嵌入。
------------------------------------------------------------------------------------------------
喜歡撰寫文章的你,不妨來了解一下:
歡迎加入一起練習寫作,賺取知識!
為什麼會看到廣告
avatar-img
118會員
267內容數
哈囉,我是阿Han,是一位 👩‍💻 軟體研發工程師,喜歡閱讀、學習、撰寫文章及教學,擅長以圖代文,化繁為簡,除了幫助自己釐清思路之外,也希望藉由圖解的方式幫助大家共同學習,甚至手把手帶您設計出高品質的軟體產品。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
阿Han的沙龍 的其他內容
Named Entity Recognition(NER)是一種自然語言處理技術,它的目的是識別文本中的具有特定意義的實體(也稱為命名實體)。這些命名實體可以是人名、地名、組織名、日期、時間、數量等等。 這項技術可以幫助機器更好地理解文本,提高自然語言處理的精度和效率,也可以用於許多應用場景,例如搜
上一篇「【Google Colab Python系列】 初探Whisper: 來對一段Youtube影片進行辨識吧!」我們介紹了Whisper的基本用法及功能,這次我們除了語音辨識之外,還要下載辨識後的字幕檔,我想這對於我們常常看到沒有字幕的影片,若想要進行辨識與翻譯時非常有幫助。 這次的篇章主要做
這個篇章主要是讓我們能夠熟悉Whisper的安裝與使用方式,並簡單的對Youtube影片進行線上翻譯的工作,主軸在於了解一下整個Whisper使用方式到底是簡單還是複雜,就讓我們一起來玩玩看吧! 在這之前我們還是說一下Whisper它是什麼樣的一個工具,能夠做什麼? Whisper 是OpenAI
Named Entity Recognition(NER)是一種自然語言處理技術,它的目的是識別文本中的具有特定意義的實體(也稱為命名實體)。這些命名實體可以是人名、地名、組織名、日期、時間、數量等等。 這項技術可以幫助機器更好地理解文本,提高自然語言處理的精度和效率,也可以用於許多應用場景,例如搜
上一篇「【Google Colab Python系列】 初探Whisper: 來對一段Youtube影片進行辨識吧!」我們介紹了Whisper的基本用法及功能,這次我們除了語音辨識之外,還要下載辨識後的字幕檔,我想這對於我們常常看到沒有字幕的影片,若想要進行辨識與翻譯時非常有幫助。 這次的篇章主要做
這個篇章主要是讓我們能夠熟悉Whisper的安裝與使用方式,並簡單的對Youtube影片進行線上翻譯的工作,主軸在於了解一下整個Whisper使用方式到底是簡單還是複雜,就讓我們一起來玩玩看吧! 在這之前我們還是說一下Whisper它是什麼樣的一個工具,能夠做什麼? Whisper 是OpenAI
你可能也想看
Google News 追蹤
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
特徵工程是機器學習中的核心技術,通過將原始數據轉換為有意義的特徵,以提升模型的準確性和穩定性。常見的特徵工程方法包括異常值檢測、特徵轉換、特徵縮放、特徵表示、特徵選擇和特徵提取。本文將深入探討這些方法的適用情況及具體實施流程,以幫助讀者有效利用特徵工程來優化機器學習模型表現。
情感分析是一種自然語言處理技術,用於自動識別和分析文本中的情感傾向,通常是正向、負向或中性。 我們可以使用 NLTK 來實現一個基於單純貝斯分類器的情感分析模型。
Thumbnail
本文介紹了流行的Python套件NLTK(Natural Language Toolkit)的主要特點、功能和在中文和英文語料上的應用。從安裝到實際應用,深入介紹了分詞、停用詞去除、詞性標註、命名實體識別等NLP任務的具體實現和步驟,幫助讀者理解和應用NLTK。
Thumbnail
上回我們講到 Word Embedding 能夠將字詞表示從使用字典索引改成詞向量表示,且這個詞向量能夠包含一定程度上的語義訊息,今天就讓我們探討 Word Embedding 到底是如何訓練成的。
大語言模型是一種特殊的神經網路,設計來理解,生成與回應人類的文本。 大語言模型是使用大量文本數據訓練的深度神經網路,其訓練使用的文本數據甚至包括了整個網路公開的文本。 大語言模型的「大」,體現於模型的參數個數以及其使用的訓練數據集。如此大的模型可以有百億甚至千億的參數。這些參數都是神經網
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
Thumbnail
語言模型與文字表示以不同的方式來分析自然語言的詞語分佈及語意關係。本文章簡要介紹了語言模型、Word2vec、FastText、GloVe和Transformer等技術,並提供了實際的應用參考點,幫助讀者深入理解自然語言處理的技術。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
對於熱衷於語言科技的你, 大語言模型(LLMs)在自然語言處理(NLP)領域的發展無疑是一個革命性的進展。 從傳統的規則系統到基於深度學習的方法, LLMs展現了在理解、生成和翻譯人類語言方面的巨大突破。 這不僅是技術上的飛躍, 更是開啟了新的應用和可能性。 下面將介紹這一變革帶來的三大
Thumbnail
在日常中我們都會將很多事物定上了一個標籤,例如將商品標記價格,替孩子取姓名,公司上冠上職稱等等。 在Python中也有這種方法,就是字典的形式{ 'name' : 'crab', 'apple', 1000 }去呈現
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
特徵工程是機器學習中的核心技術,通過將原始數據轉換為有意義的特徵,以提升模型的準確性和穩定性。常見的特徵工程方法包括異常值檢測、特徵轉換、特徵縮放、特徵表示、特徵選擇和特徵提取。本文將深入探討這些方法的適用情況及具體實施流程,以幫助讀者有效利用特徵工程來優化機器學習模型表現。
情感分析是一種自然語言處理技術,用於自動識別和分析文本中的情感傾向,通常是正向、負向或中性。 我們可以使用 NLTK 來實現一個基於單純貝斯分類器的情感分析模型。
Thumbnail
本文介紹了流行的Python套件NLTK(Natural Language Toolkit)的主要特點、功能和在中文和英文語料上的應用。從安裝到實際應用,深入介紹了分詞、停用詞去除、詞性標註、命名實體識別等NLP任務的具體實現和步驟,幫助讀者理解和應用NLTK。
Thumbnail
上回我們講到 Word Embedding 能夠將字詞表示從使用字典索引改成詞向量表示,且這個詞向量能夠包含一定程度上的語義訊息,今天就讓我們探討 Word Embedding 到底是如何訓練成的。
大語言模型是一種特殊的神經網路,設計來理解,生成與回應人類的文本。 大語言模型是使用大量文本數據訓練的深度神經網路,其訓練使用的文本數據甚至包括了整個網路公開的文本。 大語言模型的「大」,體現於模型的參數個數以及其使用的訓練數據集。如此大的模型可以有百億甚至千億的參數。這些參數都是神經網
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
Thumbnail
語言模型與文字表示以不同的方式來分析自然語言的詞語分佈及語意關係。本文章簡要介紹了語言模型、Word2vec、FastText、GloVe和Transformer等技術,並提供了實際的應用參考點,幫助讀者深入理解自然語言處理的技術。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
對於熱衷於語言科技的你, 大語言模型(LLMs)在自然語言處理(NLP)領域的發展無疑是一個革命性的進展。 從傳統的規則系統到基於深度學習的方法, LLMs展現了在理解、生成和翻譯人類語言方面的巨大突破。 這不僅是技術上的飛躍, 更是開啟了新的應用和可能性。 下面將介紹這一變革帶來的三大
Thumbnail
在日常中我們都會將很多事物定上了一個標籤,例如將商品標記價格,替孩子取姓名,公司上冠上職稱等等。 在Python中也有這種方法,就是字典的形式{ 'name' : 'crab', 'apple', 1000 }去呈現