0基礎初探SQL (一)

更新於 發佈於 閱讀時間約 15 分鐘

在這個數據宇宙瀚海中星光熠熠,SQL如同一把通往知識寶庫大門的鑰匙。想像一下,每一條SELECT語句都像是一段魔法咒語,喚醒沉睡在數據庫深處的信息。

啟程地圖

程式語言麻瓜如我,使用下列兩個學習材料以實作探索SQL的應用:

  1. SQL Murder Mystery (https://mystery.knightlab.com/walkthrough.html): 偵探迷的我意外找到這個這個有趣的網站,雖然是全英 但內容不複雜,下面的範例也會以這個網站的資料為主。
  2. 牛客網 > SQL 非技術快速入門 : 我的訴求是不安裝任何東西,開網頁就能直接寫code, 所以註冊了這個網站會員,使用上很直覺。寫不出來時可以去看一眼其他人怎麼寫的 (旁邊的「解題」提供思路 or 找更快的方式)、題目引導上很細緻,甚至會敘述表格該欄資料代表的意思。
    同時,右側執行可以先「自測運行」再提交 (但是他跳錯的提示很rough, 能參考的有限.....還是要自己看)
題目畫面

題目畫面


如果實作中還是困難重重?我還有兩個錦囊妙計:

  1. 使用 ChatGPT 4.0 直接詢請AI step by step 教學 (但建議先看完上面資料1 的基礎簡介,最起碼先知道 SELECT, FROM 是什麼),例如我的prompt: 「我是個小白 可以手把手的教我 引導我寫這題嗎? 我只有很基礎的SELECT FROM 的知識 」
  2. 申請外援 哈利波特男友 (aka 其他懂SQL的工程師): 因為看到解題討論中,有許多很fancy的寫法,有些不知是聰明的簡潔還是思慮不周,這時就需要引路人回答。

在這篇文章中,我將一步步揭開:

  1. 數據庫和ERD的溫暖擁抱:ERD如何幫助我們親近並理解數據的結構
  2. SQL查詢語句的魔法咒語:讓數據按我們的願望輕聲回答
  3. 多表關聯的進階魔法:教你如何引領數據探索更多可能

與我一起踏上這段探秘之旅,從理解Entity Relationship Diagram(ERD)的圖譜開始,學習如何解讀數據之間微妙的聯繫。不僅如此,還將揭開SQL基本查詢指令的神秘面紗,學習如何巧妙地與數據對話!

ERD 實體關係圖 (Entity Relationship Diagram)

探索資料瀚海前總要有個地圖吧?若你有這個想法的話,你可能正在尋找 ERD~

ERD 用於判斷SQL資料集中每個關係,當中有金鑰匙的是primary key,也就是資料中的唯一值,藍色箭頭代表 foreign key會拿來跟不同資料表做交叉對照的唯一值。

例如在person 這張表(entity)當中id 是primary key, 這個primary key可以對應到 facebook_event_check_in這張表當中的person_id, person_id就是foerign key。

*這篇文章中, Column 是欄位,就是上述的部分;Row是列。
中國大陸的用詞欄&列好像是相反的 (?!) 如果有看到簡體的材料需要注意下。

Data Schema 與 ERD?

有接觸過資料分析的人,可能聽過 Data Schema, 但這個詞牧牧幾乎沒聽過通用的中文翻譯(?) 有人叫「資料綱要」 或者 「數據模式」。ERD 與Data Schema 雖然都用於描述數據庫結構,但它們之間存在一些主要的區別:

  1. 表示方式
    • ERD通過實體(Entity)、關聯(Relationship)和屬性(Attribute)的圖形化表示來描述數據模型。它主要用於數據庫設計的概念階段,幫助設計者和利益相關者理解數據庫結構和業務需求。
    • Data Schema:是更為具體的數據組織方式,包括具體的表、字段、數據類型、約束和索引等詳細信息。數據模式通常包含邏輯模式和物理模式,它們分別描述數據庫的邏輯結構和物理存儲方式。
  2. 目的和使用階段
    • ERD主要用於數據庫的設計階段,幫助分析和確定數據間的關係,是一種高層次的、更偏向概念性的模型。它幫助開發者和非技術合作方理解系統的數據結構。
    • Data Schema:在ERD的基礎上進一步發展,轉化為具體的數據庫設計和實現細節。它是實際建立和維護數據庫時需要遵循的藍圖。
  3. 細節層次
    • ERD:更加抽象,主要關注實體之間的關係,不深入到具體的實現細節,如數據類型或存儲細節。
    • Data Schema:包含更多的細節,如數據類型、長度、默認值、索引、約束條件等,是對數據庫結構的具體和詳細描述。

總結來說,ERD是在數據庫設計的早期階段用來幫助理解和規劃數據結構的工具,而數據模式則是更具體、更技術性的描述,用於指導數據庫的實際建立和維護。ERD可以被視為通往詳細數據模式設計的橋樑。

*埋個坑: 哈利波特說, 對於primary key, foreign key的應用同步需要參照index此一概念,但太多index會降低資料效能。

基礎咒語 | 基本規則和概念

SQL 可讀性很高,不一定需要全大寫SELECT ,但通常都會大寫,也可分成多行增加可讀性。查詢的結尾通常有分號;,表示查詢的結束。

SELECT count(*)

FROM person;

示例解釋1

  • SELECT:用於從資料庫中選擇數據。SELECT後面跟著你想要選擇的列(columns)或者使用*代表選擇所有列。
  • FROM:指定SELECT語句將要從哪個表格(table)中選擇數據。在此例子中,表格名稱是person
  • count()函數:這是一個聚合函數,用於計算表中的行數count(*)會計算表中的總行數,包括所有列中的空值(null values)
  • WHERE: (帶下詳細說)


示例解釋2

這行SQL代碼的意思是從person表中選取所有的列,但只返回結果集的前10行。這裡的LIMIT 10用於限制查詢結果的數量,以便只獲取前10條記錄。

SELECT * FROM person LIMIT 10;

初探資料

首次接觸一個資料庫或一個新表時,除了先看資料關係圖 (ERD or Data Schema) 或架構 (database structure, like the ERD) ,看看資料中有哪些數值或種類,初步探勘非常重要,可以了解數據的結構、質量和潛在的分析價值。

下面是一些常見的初步探勘步驟,以及如何檢查哪些列可能含有空值(NULL)的方法。

1. 總行數

首先,確定表中的總行數,可以給你一個基本的數據量感覺:

SELECT COUNT(*) FROM person;

2. 探查屬性與唯一值

  • 唯一值計數:查犯罪報告中,每個唯一值的欄位屬性為何,可使用DISTINCT type
  • 寫例題的時候也滿常使用的
SELECT DISTINCT type FROM crime_scene_report;

3. 查詢多少非空值

接著,為了檢查哪些列含有空值,可以對每一列進行計數,並與總行數對比。這可以通過對每個欄位使用COUNT(欄位名)來完成,因為COUNT(欄位名)只計數非空的列。

例如,檢查license_id列中有多少非空值:

SELECT COUNT(license_id) FROM person;

如果COUNT(license_id)的結果小於總行數,那麼license_id列中就存在空值。

為了綜合檢查所有列的空值情況,你可以寫一個查詢,對每一列都進行這樣的檢查:

SELECT
COUNT(id) AS id_non_null,
COUNT(name) AS name_non_null,
COUNT(license_id) AS license_id_non_null,
COUNT(address_number) AS address_number_non_null,
COUNT(address_street_name) AS address_street_name_non_null,
COUNT(ssn) AS ssn_non_null
FROM person;

這個查詢會給你每一列非空值的數量。通過與總行數對比,你可以輕易地識別出哪些列包含空值。

其他初步數據探勘

除了檢查空值外,還有幾個其他的初步數據探勘步驟可以給你更深入的數據洞察:

  • 唯一值計數:確定每個列有多少唯一值,可以使用COUNT(DISTINCT 列名)
SELECT COUNT(DISTINCT name) FROM person;
  • 數據摘要:對於數值型列,計算基本的統計數據,如最小值、最大值、平均值和標準差。
SELECT MIN(address_number), MAX(address_number), AVG(address_number), STDDEV(address_number) FROM person;
  • 分佈情況:了解某些列的分佈情況,如地址或名稱的分佈,可以使用GROUP BY語句和COUNT函數。
SELECT address_street_name, COUNT(*) FROM person GROUP BY address_street_name;

這些步驟可以幫助你建立對數據庫表中數據的基本了解,從而更好地進行後續的分析工作。

常用咒語 | SQL 中的基本元素

SQL中的keyword

除了最常使用的SELECT 和 FROM, 還可以加上其他條件調取資料:

  • WHERE語句WHERE是篩選條件,例如下列是使用要從人名(name)的欄位中,篩選出包含下列三個人名的列(使用**IN**)。
SELECT * FROM person WHERE name IN ('Yessenia Fossen', 'Ted Denfip', 'Davina Gangwer');

*上述 WHERE則是篩選條件也可以寫成 OR 但會比較冗長

SELECT * FROM person WHERE name = 'Yessenia Fossen' OR name = 'Ted Denfip' OR name = 'Davina Gangwer';
  • AND語句: 多條件篩選 ,例如此處就是去篩選 type欄位中是'theft' (盜竊) 的 並且 city 是在 'Chicago' (芝加哥)
SELECT * FROM crime_scene_report
WHERE type = 'theft'
AND city = 'Chicago';
  • BETWEEN語句: 在SQL中也可以使用 > <等符號,同時也可以使用between
SELECT DISTINCT city
FROM crime_scene_report
WHERE city BETWEEN 'W%' AND 'Z%';
  • 如果搜尋時不確定大小寫的話,也可以使用LOWER(X) 或者 UPPER(X) 幫助搜尋,下列的例子會搜尋 SQL City, 但不一定會依照其大小寫,這樣的轉換原因是 ’提供的是字串,通常會是精準搜尋。
SELECT DISTINCT city 
FROM crime_scene_report
WHERE LOWER(city) = 'sql city';

模糊匹配: LIKE加上 ‘%’ 與 ‘_’ 萬用字元 / 通配符(wildcards)

在SQL中,通配符(wildcards)是用來匹配未知字符的特殊符號,主要用於LIKE語句中實現部分匹配查詢。SQL支持兩種主要的通配符:%和_。

% 通配符

  • %:代表任意數量的字符(包括零個字符)。當你在查詢字符串中使用%通配符時,SQL會返回所有在該位置匹配任何字符的結果。

例如,查詢LIKE 'Ca%a'可以匹配"Canada"和"California",因為這些值以"Ca"開頭並以"a"結尾,中間可以是任意數量的字符。

_ 通配符

  • _:代表恰好一個任意字符。當你在查詢字符串中使用_通配符時,SQL會返回在該位置有任意單一字符的結果。

例如,查詢LIKE 'B_b'會匹配"Bob"和"Bub",因為這些值在"B"和"b"之間恰好有一個任意字符。但它不會匹配"Babe"(因為中間有兩個字符)或"Bb"(因為中間沒有字符)。

使用通配符時的注意事項

當使用通配符進行模糊匹配時,不能使用等於符號(=),而應該使用LIKE關鍵字。這是因為等於符號用於精確匹配,而LIKE則設計用來與通配符一起使用,實現模糊匹配。

例如,如果你想找到所有名字以"J"開頭的人,你可以使用以下SQL查詢:

SELECT * FROM person WHERE name LIKE 'J%';

這樣,你就可以獲得所有名字以"J"開頭的記錄,無論其後跟隨多少字符。通配符使得SQL查詢更加靈活,能夠應對只知道部分信息的情況。


那如果現在運營團隊想查看所有大學中帶有「北京」的用戶信息,提取相應數據:

SELECT device_id, gender, age, university FROM user_profile
WHERE university LIKE '%北京%';

其他延伸示例

  1. select * from emp where name like '[ac]%';
    • 這個查詢使用方括號來定義一個字符集合,它會匹配所有在name列中以'a'或'c'開頭的記錄,後面可以跟隨任意數量的字符。%代表任何數量的字符。
  2. select * from emp where name like '[!ac]%';
    • 這個查詢將匹配所有在name列中不以'a'或'c'開頭的記錄,後面可以跟隨任意數量的字符。[!ac]表示“不是'a'或'c'的任何單一字符”。

在MySQL中,會用REGEXPRLIKE來替代LIKE並使用正則表達式來達成相同的功能。


SQL的學習之路漫漫,通過探索希望你也能把SQL看作是一種溝通方式,一種讓數據說話的技巧,而不僅僅是一堆無機的代碼。希望這篇文章讓你對ERD的視覺語言和SQL查詢的基本節奏有了初步的理解,並開始感知到那些冷冷的數字和指令背後的生命力。

在下一篇文章中,將進一步深化咒語,探索如何利用更多的SQL技巧來進行更高級的數據操縱。我們將學習如何讓數據以更複雜的方式呈現,期待在這個遼闊的數據世界中,帶著探索的熱忱和對數據世界的好奇,讓我們繼續在這片數據的大海裡航行,尋覓著那些尚未發現的知識寶藏!

留言
avatar-img
留言分享你的想法!
avatar-img
牧牧的沙龍
15會員
31內容數
living a vivid life wholeheartedly
牧牧的沙龍的其他內容
2025/04/13
近期美股台股急轉彎,看看迷因幣的表現? 想入手的新手歡迎多多討論!
Thumbnail
2025/04/13
近期美股台股急轉彎,看看迷因幣的表現? 想入手的新手歡迎多多討論!
Thumbnail
2025/03/27
職場是人花費時間最多的地方之一,每個人的工作觀不同,有些人尋求成就感、有些人尋求金錢報酬、有些人更在乎穩定和團隊提供的情感價值,而職業的累積更是一場耐力賽,一個人走得快、一群人走得遠,而決定你能否跟一群人走得遠的莫過於團隊氛圍、企業文化! 但不論你(的工作觀)是哪一種,文化契合度是能否長跑下去的關鍵
Thumbnail
2025/03/27
職場是人花費時間最多的地方之一,每個人的工作觀不同,有些人尋求成就感、有些人尋求金錢報酬、有些人更在乎穩定和團隊提供的情感價值,而職業的累積更是一場耐力賽,一個人走得快、一群人走得遠,而決定你能否跟一群人走得遠的莫過於團隊氛圍、企業文化! 但不論你(的工作觀)是哪一種,文化契合度是能否長跑下去的關鍵
Thumbnail
2025/01/26
這份完整指南將逐步帶你了解如何申請ETF電子帳單以及轉匯款至富邦6208的流程。文章包含詳細步驟圖解,確保你可以輕鬆跟隨操作。 同時一文說明白 除息日 & 收益分配日,對照中英文名詞!
Thumbnail
2025/01/26
這份完整指南將逐步帶你了解如何申請ETF電子帳單以及轉匯款至富邦6208的流程。文章包含詳細步驟圖解,確保你可以輕鬆跟隨操作。 同時一文說明白 除息日 & 收益分配日,對照中英文名詞!
Thumbnail
看更多
你可能也想看
Thumbnail
已經存在在table裡面的那些record做更新。 ※ 語法 UPDATE [LOW_PRIORITY] [IGNORE] table_name SET column_name1 = expr1, column_name2 = expr2, … [WHERE
Thumbnail
已經存在在table裡面的那些record做更新。 ※ 語法 UPDATE [LOW_PRIORITY] [IGNORE] table_name SET column_name1 = expr1, column_name2 = expr2, … [WHERE
Thumbnail
※ 把record加到table有兩種方式: VALUES • SELECT ※ 語法 INSERT INTO VALUES 語法: Record 代表一組值的集合,每個值對應到表格中的一個欄位(column)。 INSERT INTO 語法用來指定要插入資料的表格。 需要提供一個
Thumbnail
※ 把record加到table有兩種方式: VALUES • SELECT ※ 語法 INSERT INTO VALUES 語法: Record 代表一組值的集合,每個值對應到表格中的一個欄位(column)。 INSERT INTO 語法用來指定要插入資料的表格。 需要提供一個
Thumbnail
※ 什麼是WHERE? 使用 WHERE來設定條件,可以幫助我們縮小查詢結果的範圍,取得想要的結果。 ※ 語法: ※ 解析順序: From:先看是哪一張table→table裡面符合Where指定條件的record→再看Select指定的是那些欄位→再根據那個欄位進行排序。 ※ 使⽤⽅
Thumbnail
※ 什麼是WHERE? 使用 WHERE來設定條件,可以幫助我們縮小查詢結果的範圍,取得想要的結果。 ※ 語法: ※ 解析順序: From:先看是哪一張table→table裡面符合Where指定條件的record→再看Select指定的是那些欄位→再根據那個欄位進行排序。 ※ 使⽤⽅
Thumbnail
※ 語法 SELECT select_list FROM table_name​ ※ 解析順序 From:從哪裡拿? SELECT:要 "拿什麼" 資料? ※ 使用場景: Single column(單一欄位): Multiple column(多個欄位): All colu
Thumbnail
※ 語法 SELECT select_list FROM table_name​ ※ 解析順序 From:從哪裡拿? SELECT:要 "拿什麼" 資料? ※ 使用場景: Single column(單一欄位): Multiple column(多個欄位): All colu
Thumbnail
※ 關聯式資料庫(RDBMS)是什麼? 關聯式資料庫(RDBMS)是一種傳統的資料庫系統,以結構化查詢語言(SQL)為基礎,將資料儲存於預定義的表格中。這些表格包括行和列,彼此之間存在明確的關聯性。 ※ 關聯式資料庫(RDBMS)有兩個重要元素: 關聯(Relational): 關聯式資料庫
Thumbnail
※ 關聯式資料庫(RDBMS)是什麼? 關聯式資料庫(RDBMS)是一種傳統的資料庫系統,以結構化查詢語言(SQL)為基礎,將資料儲存於預定義的表格中。這些表格包括行和列,彼此之間存在明確的關聯性。 ※ 關聯式資料庫(RDBMS)有兩個重要元素: 關聯(Relational): 關聯式資料庫
Thumbnail
數據分析是現代社會的核心技能,適用於各行各業。無論是在市場營銷、財務管理,還是產品開發中,數據分析都扮演著至關重要的角色。提升數據敏感度有助於提高分析的準確性和效率,使我們能夠迅速找到關鍵信息,進而做出明智的決策。本文將探討數據分析訓練方法,提供實用案例,幫助初學者快速掌握數據分析技術。
Thumbnail
數據分析是現代社會的核心技能,適用於各行各業。無論是在市場營銷、財務管理,還是產品開發中,數據分析都扮演著至關重要的角色。提升數據敏感度有助於提高分析的準確性和效率,使我們能夠迅速找到關鍵信息,進而做出明智的決策。本文將探討數據分析訓練方法,提供實用案例,幫助初學者快速掌握數據分析技術。
Thumbnail
在這個星光閃爍的數據宇宙中,SQL是一把鑰匙,開啟了通往知識寶庫的大門。想像一下,每一條SELECT語句都像是一段魔法咒語,喚醒沉睡在數據庫深處的信息。今天,我們就要一起踏上這段探秘之旅,將揭開SQL基本查詢指令的神秘面紗,學習如何巧妙地與數據對話。
Thumbnail
在這個星光閃爍的數據宇宙中,SQL是一把鑰匙,開啟了通往知識寶庫的大門。想像一下,每一條SELECT語句都像是一段魔法咒語,喚醒沉睡在數據庫深處的信息。今天,我們就要一起踏上這段探秘之旅,將揭開SQL基本查詢指令的神秘面紗,學習如何巧妙地與數據對話。
Thumbnail
在POWER QUERY從0到1 #9 樞紐資料行的功能是將長資料轉換成寬資料,使數據可以快速分析。 而所謂的取消資料行樞紐,就是把寬資料轉換成長資料的一個過程,也就是資料的正規化。 如下圖所示,左邊的圖為二維結構,屬於寬資料,每列可能包含多筆數據(1.2.3月),右邊的圖屬於長資料,每列都
Thumbnail
在POWER QUERY從0到1 #9 樞紐資料行的功能是將長資料轉換成寬資料,使數據可以快速分析。 而所謂的取消資料行樞紐,就是把寬資料轉換成長資料的一個過程,也就是資料的正規化。 如下圖所示,左邊的圖為二維結構,屬於寬資料,每列可能包含多筆數據(1.2.3月),右邊的圖屬於長資料,每列都
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News