付費限定

【🔒語音辨識引擎sherpa-onnx GPU下篇】讓您體驗更快的語音辨識功能(Docker架設)

更新於 發佈於 閱讀時間約 10 分鐘

上集回顧

上集我們提到「【語音辨識引擎sherpa-onnx CPU上篇】讓您輕鬆體驗語音辨識功能(Docker架設)」, 相信大家對於sherpa-onnx具備一定的基本概念並學會如何架設了吧! 如果還不會的兄弟姊妹們別擔心, 歡迎底下留言, 我們會盡量的協助您直到學會為止, 那麼雖然CPU版本架設的很快, 但實際的系統環境需要處理的辨識量會非常的龐大, 單純只考CPU顯然不夠用, 因此本章節就來教您如何用Docker來打包GPU的版本。

以行動支持創作者!付費即可解鎖
本篇內容共 4139 字、0 則留言,僅發佈於🔒 阿Han的軟體心法實戰營你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
118會員
267內容數
哈囉,我是阿Han,是一位 👩‍💻 軟體研發工程師,喜歡閱讀、學習、撰寫文章及教學,擅長以圖代文,化繁為簡,除了幫助自己釐清思路之外,也希望藉由圖解的方式幫助大家共同學習,甚至手把手帶您設計出高品質的軟體產品。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
阿Han的沙龍 的其他內容
還記得我們之前介紹過「【Google Colab Python系列】 初探Whisper: 來一段Youtube影片進行語音辨識吧!」這套語音辨識引擎, 那為什麼我們又要教這一套? 因為我們也可以將whisper的模型轉換成onnx的格式, 輕鬆移植到各種平台, 且效能更佳。 語音辨識的熱門組件之
KSQL引擎, 串流形式的SQL? 聽了應該霧煞煞吧! 想像一下傳統的SQL, 是不是一個指令一個動作, 每發送一個指令之後就必須等到查詢/寫入…動作皆完成之後才回應, 然而在Streaming的應用上這顯然不太可行, 每分每秒都有資料流入的情境下, 資料的狀態都在變化, 假設我們一個指令一個動作,
為什麼會有Schema Registry的出現? 因為Kafka的零拷貝原則, 也就是kafka本身並不會去碰觸到訊息也不進行資料驗證, 而是bypass的傳送, 預設都以位元組來傳輸資料會比較有效率, 但位元組誰看得懂啊...。 加上Kafka的特性是生產者與消費者並不能直接溝通, 因
連接器故名思議就是兩個系統之間的橋樑, 而Kafka Connect正是扮演著這樣的角色, 如圖上, 我們可以透過Kafka Connect將SQL的資料導出到Kafka並導入到MySQL。 豐富的Plugin Confluent Hub提供了各式各樣的外掛套件, 包括了MongoDB、My
我們在「【🎓 Python的深度問答集】torchaudio 對部分段落進行音訊解碼」有分享到如何對一包包的封包進行音訊解碼, 但隨著音檔越大, 最終解碼的速度會越來越慢, 而這並非串流的本意, 串流應該就像水管一樣, 收到多少資料就運算多少量, 並不會隨著累積的容量越大而導致效能下降。 但實際
為什麼要用Docker安裝? Docker是一個容器化平台, 就類似於我們早期虛擬機的VMWare、Virtual Box…等, 虛擬機平台一般, 只是面向的是伺服端, 供企業快速、簡單、輕量的佈署開發完成的程式軟體, 並將相關的環境依賴皆封裝成一包所謂的映像檔(image), 透過這樣的方式減少
還記得我們之前介紹過「【Google Colab Python系列】 初探Whisper: 來一段Youtube影片進行語音辨識吧!」這套語音辨識引擎, 那為什麼我們又要教這一套? 因為我們也可以將whisper的模型轉換成onnx的格式, 輕鬆移植到各種平台, 且效能更佳。 語音辨識的熱門組件之
KSQL引擎, 串流形式的SQL? 聽了應該霧煞煞吧! 想像一下傳統的SQL, 是不是一個指令一個動作, 每發送一個指令之後就必須等到查詢/寫入…動作皆完成之後才回應, 然而在Streaming的應用上這顯然不太可行, 每分每秒都有資料流入的情境下, 資料的狀態都在變化, 假設我們一個指令一個動作,
為什麼會有Schema Registry的出現? 因為Kafka的零拷貝原則, 也就是kafka本身並不會去碰觸到訊息也不進行資料驗證, 而是bypass的傳送, 預設都以位元組來傳輸資料會比較有效率, 但位元組誰看得懂啊...。 加上Kafka的特性是生產者與消費者並不能直接溝通, 因
連接器故名思議就是兩個系統之間的橋樑, 而Kafka Connect正是扮演著這樣的角色, 如圖上, 我們可以透過Kafka Connect將SQL的資料導出到Kafka並導入到MySQL。 豐富的Plugin Confluent Hub提供了各式各樣的外掛套件, 包括了MongoDB、My
我們在「【🎓 Python的深度問答集】torchaudio 對部分段落進行音訊解碼」有分享到如何對一包包的封包進行音訊解碼, 但隨著音檔越大, 最終解碼的速度會越來越慢, 而這並非串流的本意, 串流應該就像水管一樣, 收到多少資料就運算多少量, 並不會隨著累積的容量越大而導致效能下降。 但實際
為什麼要用Docker安裝? Docker是一個容器化平台, 就類似於我們早期虛擬機的VMWare、Virtual Box…等, 虛擬機平台一般, 只是面向的是伺服端, 供企業快速、簡單、輕量的佈署開發完成的程式軟體, 並將相關的環境依賴皆封裝成一包所謂的映像檔(image), 透過這樣的方式減少
你可能也想看
Google News 追蹤
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
了解如何使用 Cloudflare Workers AI 與 Whisper 建立免費開源的語音辨識功能。本文詳細說明註冊步驟、部署流程及程式碼修改,讓你輕鬆將語音轉換成文字。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們從 AI說書 - 從0開始 - 103 至 AI說書 - 從0開始 - 105 的努力,已經完成資料集前處理,現在需要定義一個函數來加載這些清理過的數據集,並在預處
Thumbnail
本文主要使用SpeechRecognition來做一個簡單的語音辨識,使用pyqt5介面呈現。 按下Start Recording,開始錄音,並顯示請開始說話。然後按鈕名改名Stop 在按下Stop Recording,稍等片刻後就會呈現出辨識結果​ 程式範例 import sys i
Thumbnail
  我們在語音初探篇提到TTS的流程可以分成三個部分 :輸入前處理、預測音訊特徵、語音重建,其中輸入前處理的部分上兩篇已經處理完,在進入預測音訊特徵前,讓我們先來理解最後的語音重建部分。
Thumbnail
上篇我們簡單的了解了 TTS 想要達到的目標,但是對於訓練資料的處理、網路架構、損失函數、輸出分析等考慮到篇幅尚未解釋清楚,這篇將針對訓練資料處理中的文字部分進行詳細說明,讓我們開始吧。
別小看語言模型,我們的歷史記載,不是都靠著文本嗎?
Thumbnail
要如何做到無須任何額外訓練樣本就能做到"跨語言"的語音生成,這聽起來很不可思議對吧? 但這就是本篇論文取得的成就,不僅如此,該有的功能,如調整情感,口音節奏,停頓語調這些功能也不在話下。跟著我一起用探秘還有獨立思考的眼光來分析這篇論文,這會是很有趣的旅程。
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
Thumbnail
了解如何使用 Cloudflare Workers AI 與 Whisper 建立免費開源的語音辨識功能。本文詳細說明註冊步驟、部署流程及程式碼修改,讓你輕鬆將語音轉換成文字。
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們從 AI說書 - 從0開始 - 103 至 AI說書 - 從0開始 - 105 的努力,已經完成資料集前處理,現在需要定義一個函數來加載這些清理過的數據集,並在預處
Thumbnail
本文主要使用SpeechRecognition來做一個簡單的語音辨識,使用pyqt5介面呈現。 按下Start Recording,開始錄音,並顯示請開始說話。然後按鈕名改名Stop 在按下Stop Recording,稍等片刻後就會呈現出辨識結果​ 程式範例 import sys i
Thumbnail
  我們在語音初探篇提到TTS的流程可以分成三個部分 :輸入前處理、預測音訊特徵、語音重建,其中輸入前處理的部分上兩篇已經處理完,在進入預測音訊特徵前,讓我們先來理解最後的語音重建部分。
Thumbnail
上篇我們簡單的了解了 TTS 想要達到的目標,但是對於訓練資料的處理、網路架構、損失函數、輸出分析等考慮到篇幅尚未解釋清楚,這篇將針對訓練資料處理中的文字部分進行詳細說明,讓我們開始吧。
別小看語言模型,我們的歷史記載,不是都靠著文本嗎?
Thumbnail
要如何做到無須任何額外訓練樣本就能做到"跨語言"的語音生成,這聽起來很不可思議對吧? 但這就是本篇論文取得的成就,不僅如此,該有的功能,如調整情感,口音節奏,停頓語調這些功能也不在話下。跟著我一起用探秘還有獨立思考的眼光來分析這篇論文,這會是很有趣的旅程。