解密遺傳演算法:如何將生物進化應用於人工智能優化?

更新 發佈閱讀 6 分鐘

在人工智能和機器學習領域,有一類演算法借鑒了生物進化的智慧,它就是遺傳演算法。這種演算法通過模擬自然選擇和遺傳的過程,能夠在龐大的解空間中找到接近最優的解決方案。今天,我們就來深入探討遺傳演算法的原理、應用場景,以及如何用Python實現一個簡單的遺傳演算法。


遺傳演算法的核心思想來自於達爾文的進化論。在自然界中,適應環境的個體更容易存活下來並繁衍後代,而不適應的個體則被淘汰。經過多代的演化,種群整體的適應性會不斷提高。遺傳演算法正是模擬了這一過程:


1. 初始化種群:隨機生成一組可能的解(稱為染色體)。

2. 評估適應度:計算每個解的品質(適應度)。

3. 選擇:根據適應度選擇優秀的個體作為父代。

4. 交叉:將選中的父代進行基因重組,產生新的後代。

5. 變異:以一定概率對後代進行隨機變異。

6. 重複步驟2-5,直到滿足終止條件。


這種方法特別適合解決複雜的優化問題,尤其是那些傳統方法難以處理的非線性、多維度問題。例如,在機器學習中優化神經網絡的結構,在運籌學中解決旅行商問題,或者在金融領域中優化投資組合。


讓我們通過一個具體的例子來理解遺傳演算法的工作原理。假設我們要找到一個特定的字符串"Hello, World!"。我們可以使用遺傳演算法來模擬這個搜索過程:


1. 初始化:隨機生成一組長度相同的字符串。

2. 適應度評估:計算每個字符串與目標字符串的匹配程度。

3. 選擇:保留匹配度高的字符串。

4. 交叉:將選中的字符串進行部分交換。

5. 變異:隨機改變某些字符。


通過反覆運算這個過程,我們最終會得到與目標字符串完全匹配的結果。這個簡單的例子展示了遺傳演算法的基本原理。


以下是一個使用Python實現的簡化版遺傳演算法示例:


```python

import random

import string


# 目標字符串

target = "Hello, World!"


# 生成隨機字符串

def generate_random_string(length):

return ''.join(random.choice(string.printable) for _ in range(length))


# 計算適應度(匹配字符數)

def calculate_fitness(individual):

return sum(1 for expected, actual in zip(target, individual) if expected == actual)


# 交叉操作

def crossover(parent1, parent2):

point = random.randint(0, len(parent1) - 1)

return parent1[:point] + parent2[point:]


# 變異操作

def mutate(individual):

index = random.randint(0, len(individual) - 1)

return individual[:index] + random.choice(string.printable) + individual[index+1:]


# 主遺傳算法

def genetic_algorithm():

population_size = 100

generations = 1000

# 初始化種群

population = [generate_random_string(len(target)) for _ in range(population_size)]

for generation in range(generations):

# 評估適應度

fitness_scores = [calculate_fitness(individual) for individual in population]

# 檢查是否找到解

if max(fitness_scores) == len(target):

return population[fitness_scores.index(len(target))]

# 選擇

selected = random.choices(population, weights=fitness_scores, k=population_size)

# 新一代

new_population = []

for i in range(0, population_size, 2):

parent1, parent2 = selected[i], selected[i+1]

child1 = crossover(parent1, parent2)

child2 = crossover(parent2, parent1)

new_population.extend([mutate(child1), mutate(child2)])

population = new_population

return max(population, key=calculate_fitness)


# 運行算法

result = genetic_algorithm()

print(f"找到的最佳解:{result}")

```


這個示例雖然簡化了很多細節,但它展示了遺傳演算法的核心思想。在實際應用中,我們需要根據具體問題調整算法的各個參數,如種群大小、交叉和變異的概率等,以達到最佳效果。


遺傳演算法的優勢在於其強大的全局搜索能力和對複雜問題的適應性。然而,它也有一些局限性,如可能陷入局部最優解,或者在某些情況下收斂速度較慢。因此,在實際應用中,常常會將遺傳演算法與其他優化方法結合使用,以彌補各自的不足。


總的來說,遺傳演算法為我們提供了一種獨特的問題解決思路,它不僅在計算機科學領域有廣泛應用,還被用於生物學、工程學、經濟學等多個學科。通過學習和實踐遺傳演算法,我們可以培養創新的思維方式,更好地解決複雜的現實問題。

留言
avatar-img
留言分享你的想法!
avatar-img
小罗LA的沙龍
0會員
18內容數
小罗LA的沙龍的其他內容
2024/09/19
身為程式設計師,我們總是希望能打造一個舒適高效的工作環境。但市面上那些動輒上千元的「必備神器」真的有必要嗎?其實只要幾百塊,就能大幅提升你的工作效率和舒適度。今天就來分享10個平價又實用的工作臺升級小物,讓你的程式碼質量蹭蹭往上長! 1. 120W USB-C 傳輸線:告別充電煩惱 隨著
2024/09/19
身為程式設計師,我們總是希望能打造一個舒適高效的工作環境。但市面上那些動輒上千元的「必備神器」真的有必要嗎?其實只要幾百塊,就能大幅提升你的工作效率和舒適度。今天就來分享10個平價又實用的工作臺升級小物,讓你的程式碼質量蹭蹭往上長! 1. 120W USB-C 傳輸線:告別充電煩惱 隨著
2024/09/17
在嵌入式設備中,電池狀態的估算一直是個棘手的問題。不同於傳統的固定模型,利用機器學習來預測電池剩餘電量(SOC)成為了一個極具潛力的方向。然而,在急於套用模型之前,我們往往忽視了一個關鍵步驟——探索性數據分析(EDA)。 EDA的重要性不言而喻。它不僅幫助我們理解數據的本質,還為後續的模型選擇
2024/09/17
在嵌入式設備中,電池狀態的估算一直是個棘手的問題。不同於傳統的固定模型,利用機器學習來預測電池剩餘電量(SOC)成為了一個極具潛力的方向。然而,在急於套用模型之前,我們往往忽視了一個關鍵步驟——探索性數據分析(EDA)。 EDA的重要性不言而喻。它不僅幫助我們理解數據的本質,還為後續的模型選擇
2024/09/17
人工智能(AI)和機器學習(ML)正在改變我們生活的方方面面,從購物推薦到醫療診斷,再到犯罪預測。我們常常認為這些技術工具是客觀公正的,能夠幫助我們擺脫人類的偏見和主觀判斷。然而,事實並非如此簡單。 讓我們從一個著名的案例說起。2018年,亞馬遜公司被爆出其招聘AI系統存在性別歧視。這個系統被
2024/09/17
人工智能(AI)和機器學習(ML)正在改變我們生活的方方面面,從購物推薦到醫療診斷,再到犯罪預測。我們常常認為這些技術工具是客觀公正的,能夠幫助我們擺脫人類的偏見和主觀判斷。然而,事實並非如此簡單。 讓我們從一個著名的案例說起。2018年,亞馬遜公司被爆出其招聘AI系統存在性別歧視。這個系統被
看更多
你可能也想看
Thumbnail
金馬獎呼喚大家走進戲院,但Youtube、Netflix已成日常。最新研究顯示,臺灣VOD訂閱戶破700萬,年產值近百億。在全球影視產業洗牌之際,臺灣如何運用國際資金與平臺,將在地故事推向世界?專家點出,理解演算法、克服盜版、制定對接國際的政策是關鍵。
Thumbnail
金馬獎呼喚大家走進戲院,但Youtube、Netflix已成日常。最新研究顯示,臺灣VOD訂閱戶破700萬,年產值近百億。在全球影視產業洗牌之際,臺灣如何運用國際資金與平臺,將在地故事推向世界?專家點出,理解演算法、克服盜版、制定對接國際的政策是關鍵。
Thumbnail
使台劇得以突破過往印象中偶像劇、鄉土劇等範疇,產製更多類型,甚至紅到國外、帶動台灣觀光的最重要原因,便是「隨選串流平台」服務在近十年的蓬勃發展,台灣人愛看串流的程度或許比你我想像中都高,高到連美國電影協會(MPA),都委託Frontier Economics進行研究
Thumbnail
使台劇得以突破過往印象中偶像劇、鄉土劇等範疇,產製更多類型,甚至紅到國外、帶動台灣觀光的最重要原因,便是「隨選串流平台」服務在近十年的蓬勃發展,台灣人愛看串流的程度或許比你我想像中都高,高到連美國電影協會(MPA),都委託Frontier Economics進行研究
Thumbnail
在喧囂的日常中,你是否尋找能代表內心狀態的氣味?臺灣獨立調香師品牌 Sunkronizo 的「一週八日」系列香水,演繹創作者孤獨、沉靜卻自由奔放的內在。其中「星期六 Silent Wild」以綠橄欖、茶香與白麝香交織出清新、寧靜且溫暖的氣息,連結自我與世界的流動,找回那份「只是在」的和諧。
Thumbnail
在喧囂的日常中,你是否尋找能代表內心狀態的氣味?臺灣獨立調香師品牌 Sunkronizo 的「一週八日」系列香水,演繹創作者孤獨、沉靜卻自由奔放的內在。其中「星期六 Silent Wild」以綠橄欖、茶香與白麝香交織出清新、寧靜且溫暖的氣息,連結自我與世界的流動,找回那份「只是在」的和諧。
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 114 建立了 Transformer 模型,並在 AI說書 - 從0開始 - 115 載入權重並執行 Tokenizing,現
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 114 建立了 Transformer 模型,並在 AI說書 - 從0開始 - 115 載入權重並執行 Tokenizing,現
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 87 說:Wang 等人 2019 年的論文,提供了合理答案的選擇 (Choice of Plausible Answers, COP
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 新模型和 Human Baselines 排名將不斷變化,Human Baselines 的位置自從基礎模型出現以來,它就不再具有多大意義了,這些排名只是表明經典 NL
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 新模型和 Human Baselines 排名將不斷變化,Human Baselines 的位置自從基礎模型出現以來,它就不再具有多大意義了,這些排名只是表明經典 NL
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 如 AI說書 - 從0開始 - 78 所述,經過 AI說書 - 從0開始 - 74 到目前為止的實驗,應可以漸漸感受到 Transformer 模型如何從數學層面漸漸往
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 如 AI說書 - 從0開始 - 78 所述,經過 AI說書 - 從0開始 - 74 到目前為止的實驗,應可以漸漸感受到 Transformer 模型如何從數學層面漸漸往
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers for Natural Language Processing and Computer Vision, 2024 這本書中講 Decoder
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformers for Natural Language Processing and Computer Vision, 2024 這本書中講 Decoder
Thumbnail
本文章介紹了Nature期刊中關於蛋白質序列的深度學習模型以及未來應用的重要性。蛋白質設計的應用從生物醫學到環境科學等各個領域解決問題方面具有巨大潛力。
Thumbnail
本文章介紹了Nature期刊中關於蛋白質序列的深度學習模型以及未來應用的重要性。蛋白質設計的應用從生物醫學到環境科學等各個領域解決問題方面具有巨大潛力。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News