【訊號調變】IQ調變器

閱讀時間約 2 分鐘
●IQ 調變元件的產生
在實際的硬體設計考量上,很難根據輸入的訊息訊號來精確改變硬體電路中的高頻
載子正弦波的相位。而且操縱載子正弦波的強度和相位的硬體訊號調變器會很昂
貴,難以設計和製造。但是由於IQ調變器的誕生,徹底克服此一難題並大大擴增訊
號訊的領域
訊號基本數學模型如下:
根據以上的恆等式,發現正弦波和餘弦波的頻率是完全相同的,只是二者之間有
一個90度的相位差。這個現象的含義非常重要;基本上它意指我們只要操作分離
的I及Q輸入訊號的強度,就可以控制調變中的RF載子正弦波的振幅、頻率及相
位!利用這個方法,我們不再需要試圖直接修改RF載子正弦波的相位。
我們可以操縱輸入I及Q訊號的強度來獲得同樣的效果。當然,等式的後半段是一
個正弦波,前半段是餘弦波,因此我們必須在硬體電路中加入一項IQ調變器設
備,負責在用來做為I及Q混合器的載具訊號之間產生90度的相位移動, IQ調變
器的電路圖
圖中的X圈代表混合器,就是執行頻率加倍及將訊號升頻或降頻(這裡是升頻)
的設備。IQ調變器將I波型與RF載子正弦波混合,再將Q訊號與同樣的RF載子正
弦波混合,但是相位有90度的偏移。Q訊號從I訊號中減除(就像上面的第三行中
的等式一樣),產生最後的RF調變波型。
事實上,載子改變90度是I和Q資料的名稱的由來
I : 是同相(in-phase)資料(因為載子同相),
Q : 是正交(quadrature)資料(因為載子偏移90度)。
Quadrature 指Shifted (旋轉) 90度
當一對周期性信號相位相差 90 度時,它們被稱為⎾正交Quadrature˩
這種技術稱為正交升頻法(quadrature upconversion),而同樣的IQ調變器可以
用於任何調變算法
由於IQ調變器只會對I及Q波型振幅的變動做出反應,而代表訊息訊號中強度和相
位的I和Q資料可以任意改變。因此IQ調變器被設計成一個標準化元件。
●IQ調變元件的使用
●IQ Modulator / Demodulator
LO 振盪器:產生Sinωt 及 Cosωt 載波(Carrier)
LPF 低通濾波器:濾出 I 信號及Q信號
PF: 射頻
IF : 中頻
即將進入廣告,捲動後可繼續閱讀
為什麼會看到廣告
    avatar-img
    76會員
    124內容數
    1.占星軟體及運用 2.各種推運法(Transit / 次限 / 主限 / Solar Arc / 法達星限 / 中點占星等)
    留言0
    查看全部
    avatar-img
    發表第一個留言支持創作者!
    跨元探索的沙龍 的其他內容
    調變(modulation) 是一種將一個或多個週期性的載波混入想傳送之訊號的技術,常用於無線電波的傳播與通訊、利用電話線的資料通訊等各方面。
    ■手機無線通訊架構 終端設備的 無線通信模組主要有三部分為: 1.射頻前端模組(RFFEM, Radio Frequency Front-End) 2.射頻收發模組 3.基帶信號處理器。 其中,射頻前端模組主要是做到信號在不同頻率下的收發。 關、 濾波器、低噪放大器等。 各項功用為: 濾波;
    ■RF濾波器常見名詞 LNA = Low Noise Amplifier低噪音放大器 MEMS = Micro Electromechanical System 微機電系統 SAW = Surface Acoustic Wave表面聲波 : 是在壓電晶體表面上形成的電磁波。 重要性能 ■濾波器
    ■信號的各種傅立葉變換分析 【TIPS】 DTFT是時間離散傅立葉轉換,僅僅是時間上離散化了;DTFT是對 原信號在時域離散 DFT是離散傅立葉轉換,在時域和頻域上都離散了。DFT是對DTFT在頻域上 離散,相當於對原信號在時域、頻域上都離散。 DTFT是數學家的傑作,DFT是工程師的傑作。
    6G 是一種非地面網絡 (NTN, Non-Terrestrial Network) 其取代 5G 的目標,例如 >1 Tbps 的峰值數據速率、>1200 km/h 的極高移動性 支持以及 99.99999% 的端到端可靠性。 6G 的頻率範圍和帶寬使用模式比 5G 更為提升。 ●無人機空中基站
    █類比電路設計的理論工具 1.波德圖(Bode Chart)頻域分析 2.史密斯圖(Smith Chart) 3.電晶體Π 型模型 4.電晶體H 型模型 ■駐波 兩列振幅相同的相干波在同一直線上沿相反方向傳播時,波谷和波峰 互相疊加保持不動,波形不移動,無法向前傳播,稱為駐波。 █阻抗匹配
    調變(modulation) 是一種將一個或多個週期性的載波混入想傳送之訊號的技術,常用於無線電波的傳播與通訊、利用電話線的資料通訊等各方面。
    ■手機無線通訊架構 終端設備的 無線通信模組主要有三部分為: 1.射頻前端模組(RFFEM, Radio Frequency Front-End) 2.射頻收發模組 3.基帶信號處理器。 其中,射頻前端模組主要是做到信號在不同頻率下的收發。 關、 濾波器、低噪放大器等。 各項功用為: 濾波;
    ■RF濾波器常見名詞 LNA = Low Noise Amplifier低噪音放大器 MEMS = Micro Electromechanical System 微機電系統 SAW = Surface Acoustic Wave表面聲波 : 是在壓電晶體表面上形成的電磁波。 重要性能 ■濾波器
    ■信號的各種傅立葉變換分析 【TIPS】 DTFT是時間離散傅立葉轉換,僅僅是時間上離散化了;DTFT是對 原信號在時域離散 DFT是離散傅立葉轉換,在時域和頻域上都離散了。DFT是對DTFT在頻域上 離散,相當於對原信號在時域、頻域上都離散。 DTFT是數學家的傑作,DFT是工程師的傑作。
    6G 是一種非地面網絡 (NTN, Non-Terrestrial Network) 其取代 5G 的目標,例如 >1 Tbps 的峰值數據速率、>1200 km/h 的極高移動性 支持以及 99.99999% 的端到端可靠性。 6G 的頻率範圍和帶寬使用模式比 5G 更為提升。 ●無人機空中基站
    █類比電路設計的理論工具 1.波德圖(Bode Chart)頻域分析 2.史密斯圖(Smith Chart) 3.電晶體Π 型模型 4.電晶體H 型模型 ■駐波 兩列振幅相同的相干波在同一直線上沿相反方向傳播時,波谷和波峰 互相疊加保持不動,波形不移動,無法向前傳播,稱為駐波。 █阻抗匹配
    你可能也想看
    Google News 追蹤
    Thumbnail
    定子代表著馬達當中不會運轉移動的部分,因此在生產加工上要考慮較為單純,不需要考慮旋轉時的離心力作用。除了傳統的有刷直流馬達採用了磁鐵作為定子的結構之外,其它種類的馬達都採用繞線式定子,主體結構也僅剩矽鋼片、絕緣材料及漆包線,而無刷馬達則可能加入了霍爾感測器(Hall Sensor),然定子整體而言的
    Thumbnail
    傳統馬達會利用調整電阻值的大小,來直接限制馬達輸入電流的上限;但電阻值的增加也會導致銅損值上升,是種如同雙面刃的技法。所幸隨著電控技術的進步,馬達電流的限制工作可以轉交給驅動電路掌控,馬達僅需要盡可能地降低電阻值即可;更直白的說就是漆包線徑越粗越好,暨可以降低馬達電阻,還同時強化散熱能力,以得到更優
    Thumbnail
    馬達結構當中,會旋轉移動的部分,就稱為轉子;而固定不動的部分,則稱為定子。在電機產業當中,"轉子代工"一詞是針對有刷馬達的繞線轉子而言,因其組成結構較為複雜,至少包括了軸心、矽鋼片、漆包線、整流子等零配件,且加工程序除了常見的組裝配合外,還有絕緣處理、馬達繞線、整流子電焊、整流子車削、動平衡等一系列
    Thumbnail
    變壓器在現代電子設備中扮演著重要角色,根據應用需求可分為高頻和低頻兩種類型。 高頻變壓器注重效率和體積,使用精密繞線技術和高品質材料。低頻變壓器強調穩定性和耐用性,採用矽鋼片和精密繞組設計。
    Thumbnail
    首先是Y-Δ轉換口語的念法,筆者習慣稱為Y-Delte轉換,直接以英文發音為主;而它還有個中文名稱為星角轉換,也就是星形跟三角形轉換。 這是一份筆者常常使用的小工具,用來快速調整Y接或Δ接馬達設計變換時,線圈繞線條件的更改;但作為馬達設計者而言,是絕不需要考慮的Δ接設計方案。主要是Δ接會在馬達的三
    Thumbnail
    這是筆者常用的馬達設計調整手法,但原意是用於馬達工作電壓變換時,更改繞線條件的計算,如110V的馬達要更改為220V的使用電壓時,需針對繞線條件進行修改。會僅變更繞線條件而非整顆馬達修改,主要是其他材料的變動成本較高,而漆包線徑的調整是馬達當中最容易的項目;因此會發現市面上不同工作電壓的馬達外觀大小
    Thumbnail
    本文是針對馬達繞線時,想要依本身的生產能力調整漆包線徑粗度時,會使用到的轉換計算進行介紹及說明。 實際量產時往往將多條細線並繞的馬達,改由單條粗線採用機台繞線,較為省時;但開發階段,並無設備協助,僅能採用人工繞線打樣時,則會調整為多條細線並聯的模式才能順利工作,這類不同情境下的線徑變化,三不五時就
    Thumbnail
    直觀理解 導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。 偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。  (針對各維度的調整 或者稱變化 你要調多少) 應用 導數:在物理學中應用廣泛,例如描述速度和加速度。 偏導數:在多變量分析、優
    Thumbnail
    科技網絡的興起,帶動著社會的急速變遷,每個人皆面臨著不斷變化的環境和挑戰。而這個時候,人們開始發現單靠IQ和EQ並不足夠,需加入適應性商數(adaptability quotient, AQ),AQ是一組主觀的素質,大致定義為在快速、頻繁變化的環境中靈活應變和蓬勃發展的能力。
    再使用AT-START開發板時,這塊板子上搭配的外部晶體震盪器是8MHz。 若使用不同晶振,也就是震盪頻率不再是8MHz的話,需要修改哪些部分呢? 1.系統時鐘設定 void ​system_clock_config(void) 需要注意sclk(系統時鐘)有沒有超過限制、ahb及apb
    Thumbnail
    定子代表著馬達當中不會運轉移動的部分,因此在生產加工上要考慮較為單純,不需要考慮旋轉時的離心力作用。除了傳統的有刷直流馬達採用了磁鐵作為定子的結構之外,其它種類的馬達都採用繞線式定子,主體結構也僅剩矽鋼片、絕緣材料及漆包線,而無刷馬達則可能加入了霍爾感測器(Hall Sensor),然定子整體而言的
    Thumbnail
    傳統馬達會利用調整電阻值的大小,來直接限制馬達輸入電流的上限;但電阻值的增加也會導致銅損值上升,是種如同雙面刃的技法。所幸隨著電控技術的進步,馬達電流的限制工作可以轉交給驅動電路掌控,馬達僅需要盡可能地降低電阻值即可;更直白的說就是漆包線徑越粗越好,暨可以降低馬達電阻,還同時強化散熱能力,以得到更優
    Thumbnail
    馬達結構當中,會旋轉移動的部分,就稱為轉子;而固定不動的部分,則稱為定子。在電機產業當中,"轉子代工"一詞是針對有刷馬達的繞線轉子而言,因其組成結構較為複雜,至少包括了軸心、矽鋼片、漆包線、整流子等零配件,且加工程序除了常見的組裝配合外,還有絕緣處理、馬達繞線、整流子電焊、整流子車削、動平衡等一系列
    Thumbnail
    變壓器在現代電子設備中扮演著重要角色,根據應用需求可分為高頻和低頻兩種類型。 高頻變壓器注重效率和體積,使用精密繞線技術和高品質材料。低頻變壓器強調穩定性和耐用性,採用矽鋼片和精密繞組設計。
    Thumbnail
    首先是Y-Δ轉換口語的念法,筆者習慣稱為Y-Delte轉換,直接以英文發音為主;而它還有個中文名稱為星角轉換,也就是星形跟三角形轉換。 這是一份筆者常常使用的小工具,用來快速調整Y接或Δ接馬達設計變換時,線圈繞線條件的更改;但作為馬達設計者而言,是絕不需要考慮的Δ接設計方案。主要是Δ接會在馬達的三
    Thumbnail
    這是筆者常用的馬達設計調整手法,但原意是用於馬達工作電壓變換時,更改繞線條件的計算,如110V的馬達要更改為220V的使用電壓時,需針對繞線條件進行修改。會僅變更繞線條件而非整顆馬達修改,主要是其他材料的變動成本較高,而漆包線徑的調整是馬達當中最容易的項目;因此會發現市面上不同工作電壓的馬達外觀大小
    Thumbnail
    本文是針對馬達繞線時,想要依本身的生產能力調整漆包線徑粗度時,會使用到的轉換計算進行介紹及說明。 實際量產時往往將多條細線並繞的馬達,改由單條粗線採用機台繞線,較為省時;但開發階段,並無設備協助,僅能採用人工繞線打樣時,則會調整為多條細線並聯的模式才能順利工作,這類不同情境下的線徑變化,三不五時就
    Thumbnail
    直觀理解 導數:考慮的是單一變數的函數,描述的是函數在某點的斜率或變化率。 偏導數:考慮的是多變數函數,描述的是函數在某個變數變化時的變化率,其他變數保持不變。  (針對各維度的調整 或者稱變化 你要調多少) 應用 導數:在物理學中應用廣泛,例如描述速度和加速度。 偏導數:在多變量分析、優
    Thumbnail
    科技網絡的興起,帶動著社會的急速變遷,每個人皆面臨著不斷變化的環境和挑戰。而這個時候,人們開始發現單靠IQ和EQ並不足夠,需加入適應性商數(adaptability quotient, AQ),AQ是一組主觀的素質,大致定義為在快速、頻繁變化的環境中靈活應變和蓬勃發展的能力。
    再使用AT-START開發板時,這塊板子上搭配的外部晶體震盪器是8MHz。 若使用不同晶振,也就是震盪頻率不再是8MHz的話,需要修改哪些部分呢? 1.系統時鐘設定 void ​system_clock_config(void) 需要注意sclk(系統時鐘)有沒有超過限制、ahb及apb