OpenCV

含有「OpenCV」共 52 篇內容
全部內容
發佈日期由新至舊
使用 LBP(Local Binary Patterns) 進行紋理分析和瑕疵檢測 Local Binary Patterns(LBP) 是一種用來描述圖像紋理的特徵提取技術。LBP 對於檢測表面紋理的異常具有很好的效果,尤其在檢測紋理一致的材料表面(例如紡織品、紙張、金屬)時,LBP 非常有用。
Thumbnail
在有次使用cv2.resize時忽然報錯,就心血來潮不想重新安裝OpenCV,根據缺少的東西想辦法補齊。 在影像處理中,Zlib(以及 zlibwapi.dll)主要用於處理數據壓縮和解壓縮,特別是在處理大型影像文件時。 遺失原因 應用程序安裝過程中未能完整安裝所有所需的依賴項,尤其是 zli
Thumbnail
本文將指導你如何修改現有的 OpenCV 程式碼,使其利用 CUDA 加速進行深度神經網絡(DNN)推理,如超分辨率圖像放大任務。這將顯著提升運行速度,特別是在高分辨率圖像處理中。 在CMake上這選項要開,才可支援DNN模組。 CMake編譯OpenCV教學文 連結 [OpenCV][Py
Thumbnail
OpenCV 提供了專門針對 CUDA 優化的模組,這些模組使用 cv2.cuda 命名空間,並且可以直接使用 GPU 進行加速。,cv2.cuda 模塊需要在 OpenCV 編譯時啟用 CUDA 支援才能使用。 本文主要比較經過CMAKE重新編譯OpenCV使其支援Cuda,原OpenCV只支援
Thumbnail
avatar-avatar
小松鼠
謝謝螃蟹支持,假期愉快~
付費限定
你還沒有編譯 OpenCV,那麼你需要先完成 OpenCV 的編譯過程,這樣才能生成 OpenCVConfig.cmake 文件。下面是一步一步的指南,幫助你在 Windows 上編譯 OpenCV。 本文主要介紹使用Cmake + VS2022來編譯OpenCV,最後目的是讓OpenCV可以利用
Thumbnail
在影像處理中,形態學操作是非常重要的一種技術,能夠幫助我們去除噪點、強化特徵、修復物體的形狀等。形態學操作的核心是「結構元素」(kernel),不同形狀的結構元素會產生不同的處理效果。本文將介紹如何使用不同形狀的結構元素來進行圖像處理,並結合實際程式範例和測試圖片來說明其效果。
Thumbnail
付費限定
[OpenCV][Python]使用GrabCut 來去背 在上篇文章提到如何用GrabCut 來去背,但都是處於比較基礎的方式,讓演算法自行判斷前景背景,本文主要說明,使用設定參數讓演算法計算得更加準確,可根據UI上的圖顯示,用滑鼠畫區域來設定參考的背景與前景。 UI圖顯示 步驟,先載圖,在
Thumbnail
iPhone也有去背的功能,那麼OpenCV能不能做到這件事呢?,答案是可以的 如果圖像背景簡單且與前景有明顯的顏色區分,可以使用 色彩空間轉換 或 閥值分割。 如果背景較為複雜一點點,但你可以提供一個大致的前景位置,則可以使用 GrabCut。 結果圖 但在背景相當複雜的情況下,結果就不太
Thumbnail
以下是如何使用 Tesseract OCR 來辨識圖像中的文字的教學。 涵蓋了安裝 Tesseract、基本使用方法,以及如何在 Python 中進行整合。 1. 安裝 Tesseract 首先,需要安裝 Tesseract OCR 工具。這裡提供針對 Windows、macOS 和 Linu
Thumbnail
cv2.fastNlMeansDenoising() 是 OpenCV 中一個非常有效的去噪函數,基於非局部均值濾波算法(Non-Local Means Filtering)。它能夠有效地去除圖像中的隨機噪聲(如高斯噪聲),並保留圖像的細節,特別適合處理含有隨機噪聲的圖像,如拍攝時產生的感光元件噪聲
Thumbnail