付費限定

[Python][OpenCV]螺絲鎖附間距檢測

更新於 發佈於 閱讀時間約 5 分鐘

本教學將介紹如何使用 OpenCV 來檢測螺絲的鎖附間距,並提供完整的 Python 程式碼來實作這項功能。

raw-image


🔹 1. 設計目標

  • 使用二值化處理與形態學運算來強化影像
  • 計算螺絲之間的間距
  • 視覺化結果,標記最大間距並顯示數值


🔹 2. 測試用螺絲影像

raw-image
以行動支持創作者!付費即可解鎖
本篇內容共 2207 字、0 則留言,僅發佈於[Python][OpenCV]學習心得筆記你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
136會員
225內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。
留言
avatar-img
留言分享你的想法!
螃蟹_crab的沙龍 的其他內容
我們將學習如何使用 Python 和 OpenCV 實現圖像的主色提取與重新著色。 以下的程式碼展示了如何通過 KMeans 聚類演算法分析圖像,提取 HSV 色彩空間中的主色,並將圖像重新著色,提取想偵測的物件的顏色。 在官網案例,實作為RGB色彩空間,但如果套用HSV色彩空間則會因為H色
Tesseract 是一個開源的光學字符識別 (OCR) 引擎,可通過自定義訓練來改進對特定字體或語言的識別。 以下是一份基於 tesstrain 工具,並針對 Windows CMD 的完整 Tesseract 5 訓練教學。將利用官方提供的ocrd-testset.zip來做示範 前置
在使用 make 時,有時可能會遇到以下錯誤: make: *** No rule to make target 'tesseract-langdata'. Stop. 這表明 make 認為目標 tesseract-langdata 無需執行,原因可能與環境設定不正確相關。本教學將說明如何解
你還沒有編譯 OpenCV,那麼你需要先完成 OpenCV 的編譯過程,這樣才能生成 OpenCVConfig.cmake 文件。下面是一步一步的指南,幫助你在 Windows 上編譯 OpenCV。 本文主要介紹使用Cmake + VS2022來編譯OpenCV,最後目的是讓OpenCV可以利用
[OpenCV][Python]使用GrabCut 來去背 在上篇文章提到如何用GrabCut 來去背,但都是處於比較基礎的方式,讓演算法自行判斷前景背景,本文主要說明,使用設定參數讓演算法計算得更加準確,可根據UI上的圖顯示,用滑鼠畫區域來設定參考的背景與前景。 UI圖顯示 步驟,先載圖,在
本文詳細探討了Tesseract的box定義。經驗分享釐清了Tesseract與cv2.rectangle的座標差異,解釋了怎樣使用JTessBoxEditor進行框的驗證。透過範例,讀者將瞭解如何正確設置字符的bounding box,並學會轉換OCR座標為Tesseract所需格式
我們將學習如何使用 Python 和 OpenCV 實現圖像的主色提取與重新著色。 以下的程式碼展示了如何通過 KMeans 聚類演算法分析圖像,提取 HSV 色彩空間中的主色,並將圖像重新著色,提取想偵測的物件的顏色。 在官網案例,實作為RGB色彩空間,但如果套用HSV色彩空間則會因為H色
Tesseract 是一個開源的光學字符識別 (OCR) 引擎,可通過自定義訓練來改進對特定字體或語言的識別。 以下是一份基於 tesstrain 工具,並針對 Windows CMD 的完整 Tesseract 5 訓練教學。將利用官方提供的ocrd-testset.zip來做示範 前置
在使用 make 時,有時可能會遇到以下錯誤: make: *** No rule to make target 'tesseract-langdata'. Stop. 這表明 make 認為目標 tesseract-langdata 無需執行,原因可能與環境設定不正確相關。本教學將說明如何解
你還沒有編譯 OpenCV,那麼你需要先完成 OpenCV 的編譯過程,這樣才能生成 OpenCVConfig.cmake 文件。下面是一步一步的指南,幫助你在 Windows 上編譯 OpenCV。 本文主要介紹使用Cmake + VS2022來編譯OpenCV,最後目的是讓OpenCV可以利用
[OpenCV][Python]使用GrabCut 來去背 在上篇文章提到如何用GrabCut 來去背,但都是處於比較基礎的方式,讓演算法自行判斷前景背景,本文主要說明,使用設定參數讓演算法計算得更加準確,可根據UI上的圖顯示,用滑鼠畫區域來設定參考的背景與前景。 UI圖顯示 步驟,先載圖,在
本文詳細探討了Tesseract的box定義。經驗分享釐清了Tesseract與cv2.rectangle的座標差異,解釋了怎樣使用JTessBoxEditor進行框的驗證。透過範例,讀者將瞭解如何正確設置字符的bounding box,並學會轉換OCR座標為Tesseract所需格式
你可能也想看
Google News 追蹤
Thumbnail
全新 vocus 挑戰活動「方格人氣王」來啦~四大挑戰任你選,留言 / 愛心 / 瀏覽數大 PK,還有新手專屬挑戰!無論你是 vocus 上活躍創作者或剛加入的新手,都有機會被更多人看見,獲得站上版位曝光&豐富獎勵!🏆
Thumbnail
本文探討AI筆記工具的優缺點、選擇建議及未來趨勢,比較NotebookLM、OneNote+Copilot、Notion AI、Obsidian+GPT插件和Palantir Foundry等工具,並強調安全注意事項及個人需求評估的重要性。
Thumbnail
全方位分析脫離繼承戰的方法,大膽猜測誰會成為卡丁國下一任國王。
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
接續上一邊,分割了螺絲與螺母的圖像,但分割後的結果,因為螺絲過於接近的關係,沒有切割乾淨,會有其他螺絲的頭或者身體,這樣會影響到後續量測。 [OpenCV應用][Python]擷取出螺絲或螺母的影像 本文主要是,如何去除掉不要的背景雜物。 下層為原先分割的圖,上層為去除背景雜物的圖。
Thumbnail
此篇為上一篇文章的延伸,先辦別是螺絲還是螺母才擷取出影像。 [OpenCV應用][Python]利用findContours辨識螺絲還是螺母 因為可能會需要另外處理螺絲與螺母才可以準確地去做量測,所以第一步就是先分割出這兩種的圖像。
Thumbnail
先上成果圖,如果是螺母的話就標註 is circle來區分。 簡單的用圖表加文字說明AOI辨識 在此文章的範例中: 影像前處理:色彩空間轉換(灰階) -> 二值化閥值處理 演算法:尋找輪廓 數值判斷:長,寬,面積,周長 圖片來源 程式碼 import cv2 import nu
Thumbnail
介紹OpenCV中的cv2.matchTemplate和cv2.minMaxLoc函數的使用方法和參數,提供程式範例以及相關特徵匹配的詳細介紹,讓讀者對此有更深入的瞭解。
Thumbnail
[OpenCV應用][Python]找出圖像中的四個方位的邊緣點求出寬高 呈上篇應用Numpy找到的座標點,那我們如何捨棄掉差異過大的座標點呢? 可能圖像物件邊緣不佳,採樣就會差異過大,造成計算出的寬高是不準確的。 遇到這種狀況,就可以使用下方的程式範例來篩選座標點。 為求方便,此範例跟圖
Thumbnail
觀看本文將可以學習到如何利用Numpy求得物件的邊緣點,及算出物件的寬跟高。 有詳細的程式邏輯說明,及各函式用法說明。 綠點及紅點則是採樣到的邊界點,比較粗的點是偵測到的最大值 完整程式碼 import cv2 import numpy as np import matplotl
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框
Thumbnail
全新 vocus 挑戰活動「方格人氣王」來啦~四大挑戰任你選,留言 / 愛心 / 瀏覽數大 PK,還有新手專屬挑戰!無論你是 vocus 上活躍創作者或剛加入的新手,都有機會被更多人看見,獲得站上版位曝光&豐富獎勵!🏆
Thumbnail
本文探討AI筆記工具的優缺點、選擇建議及未來趨勢,比較NotebookLM、OneNote+Copilot、Notion AI、Obsidian+GPT插件和Palantir Foundry等工具,並強調安全注意事項及個人需求評估的重要性。
Thumbnail
全方位分析脫離繼承戰的方法,大膽猜測誰會成為卡丁國下一任國王。
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
接續上一邊,分割了螺絲與螺母的圖像,但分割後的結果,因為螺絲過於接近的關係,沒有切割乾淨,會有其他螺絲的頭或者身體,這樣會影響到後續量測。 [OpenCV應用][Python]擷取出螺絲或螺母的影像 本文主要是,如何去除掉不要的背景雜物。 下層為原先分割的圖,上層為去除背景雜物的圖。
Thumbnail
此篇為上一篇文章的延伸,先辦別是螺絲還是螺母才擷取出影像。 [OpenCV應用][Python]利用findContours辨識螺絲還是螺母 因為可能會需要另外處理螺絲與螺母才可以準確地去做量測,所以第一步就是先分割出這兩種的圖像。
Thumbnail
先上成果圖,如果是螺母的話就標註 is circle來區分。 簡單的用圖表加文字說明AOI辨識 在此文章的範例中: 影像前處理:色彩空間轉換(灰階) -> 二值化閥值處理 演算法:尋找輪廓 數值判斷:長,寬,面積,周長 圖片來源 程式碼 import cv2 import nu
Thumbnail
介紹OpenCV中的cv2.matchTemplate和cv2.minMaxLoc函數的使用方法和參數,提供程式範例以及相關特徵匹配的詳細介紹,讓讀者對此有更深入的瞭解。
Thumbnail
[OpenCV應用][Python]找出圖像中的四個方位的邊緣點求出寬高 呈上篇應用Numpy找到的座標點,那我們如何捨棄掉差異過大的座標點呢? 可能圖像物件邊緣不佳,採樣就會差異過大,造成計算出的寬高是不準確的。 遇到這種狀況,就可以使用下方的程式範例來篩選座標點。 為求方便,此範例跟圖
Thumbnail
觀看本文將可以學習到如何利用Numpy求得物件的邊緣點,及算出物件的寬跟高。 有詳細的程式邏輯說明,及各函式用法說明。 綠點及紅點則是採樣到的邊界點,比較粗的點是偵測到的最大值 完整程式碼 import cv2 import numpy as np import matplotl
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框