付費限定

[Python][OpenCV]螺絲鎖附間距檢測

更新於 發佈於 閱讀時間約 5 分鐘

本教學將介紹如何使用 OpenCV 來檢測螺絲的鎖附間距,並提供完整的 Python 程式碼來實作這項功能。

raw-image


🔹 1. 設計目標

  • 使用二值化處理與形態學運算來強化影像
  • 計算螺絲之間的間距
  • 視覺化結果,標記最大間距並顯示數值


🔹 2. 測試用螺絲影像

raw-image
以行動支持創作者!付費即可解鎖
本篇內容共 2207 字、0 則留言,僅發佈於[Python][OpenCV]學習心得筆記你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
螃蟹_crab的沙龍
150會員
294內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。 興趣是攝影,踏青,探索未知領域。 人生就是不斷的挑戰及自我認清,希望老了躺在床上不會後悔自己什麼都沒做。
螃蟹_crab的沙龍的其他內容
2025/04/01
1. 概述 在光學字符識別(OCR)過程中,常見的問題之一是「斷字」,即原本應為一個完整字符的部分被錯誤地分割成兩個或多個獨立的字符。這通常發生在掃描文件、圖像降噪或影像二值化處理後。本篇文章將介紹一種基於 骨架化端點距離分析 的斷字檢測方法,並提供完整的 Python 實作。 2. 斷字檢測的
Thumbnail
2025/04/01
1. 概述 在光學字符識別(OCR)過程中,常見的問題之一是「斷字」,即原本應為一個完整字符的部分被錯誤地分割成兩個或多個獨立的字符。這通常發生在掃描文件、圖像降噪或影像二值化處理後。本篇文章將介紹一種基於 骨架化端點距離分析 的斷字檢測方法,並提供完整的 Python 實作。 2. 斷字檢測的
Thumbnail
2025/01/18
我們將學習如何使用 Python 和 OpenCV 實現圖像的主色提取與重新著色。 以下的程式碼展示了如何通過 KMeans 聚類演算法分析圖像,提取 HSV 色彩空間中的主色,並將圖像重新著色,提取想偵測的物件的顏色。 在官網案例,實作為RGB色彩空間,但如果套用HSV色彩空間則會因為H色
Thumbnail
2025/01/18
我們將學習如何使用 Python 和 OpenCV 實現圖像的主色提取與重新著色。 以下的程式碼展示了如何通過 KMeans 聚類演算法分析圖像,提取 HSV 色彩空間中的主色,並將圖像重新著色,提取想偵測的物件的顏色。 在官網案例,實作為RGB色彩空間,但如果套用HSV色彩空間則會因為H色
Thumbnail
2025/01/01
Tesseract 是一個開源的光學字符識別 (OCR) 引擎,可通過自定義訓練來改進對特定字體或語言的識別。 以下是一份基於 tesstrain 工具,並針對 Windows CMD 的完整 Tesseract 5 訓練教學。將利用官方提供的ocrd-testset.zip來做示範 前置
Thumbnail
2025/01/01
Tesseract 是一個開源的光學字符識別 (OCR) 引擎,可通過自定義訓練來改進對特定字體或語言的識別。 以下是一份基於 tesstrain 工具,並針對 Windows CMD 的完整 Tesseract 5 訓練教學。將利用官方提供的ocrd-testset.zip來做示範 前置
Thumbnail
看更多
你可能也想看
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
2025 vocus 推出最受矚目的活動之一——《開箱你的美好生活》,我們跟著創作者一起「開箱」各種故事、景點、餐廳、超值好物⋯⋯甚至那些讓人會心一笑的生活小廢物;這次活動不僅送出了許多獎勵,也反映了「內容有價」——創作不只是分享、紀錄,也能用各種不同形式變現、帶來實際收入。
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
呈上篇文章,針對單排的圖像文字增加間隔,但如果文字是雙排呢 [OpenCV][Python]OCR分割及增加間隔[單排文字]
Thumbnail
本文將說明如何去辨識出圖片文字​位置及高寬。
Thumbnail
本文將說明如何去辨識出圖片文字​位置及高寬。
Thumbnail
接續上一邊,分割了螺絲與螺母的圖像,但分割後的結果,因為螺絲過於接近的關係,沒有切割乾淨,會有其他螺絲的頭或者身體,這樣會影響到後續量測。 [OpenCV應用][Python]擷取出螺絲或螺母的影像 本文主要是,如何去除掉不要的背景雜物。 下層為原先分割的圖,上層為去除背景雜物的圖。
Thumbnail
接續上一邊,分割了螺絲與螺母的圖像,但分割後的結果,因為螺絲過於接近的關係,沒有切割乾淨,會有其他螺絲的頭或者身體,這樣會影響到後續量測。 [OpenCV應用][Python]擷取出螺絲或螺母的影像 本文主要是,如何去除掉不要的背景雜物。 下層為原先分割的圖,上層為去除背景雜物的圖。
Thumbnail
此篇為上一篇文章的延伸,先辦別是螺絲還是螺母才擷取出影像。 [OpenCV應用][Python]利用findContours辨識螺絲還是螺母 因為可能會需要另外處理螺絲與螺母才可以準確地去做量測,所以第一步就是先分割出這兩種的圖像。
Thumbnail
此篇為上一篇文章的延伸,先辦別是螺絲還是螺母才擷取出影像。 [OpenCV應用][Python]利用findContours辨識螺絲還是螺母 因為可能會需要另外處理螺絲與螺母才可以準確地去做量測,所以第一步就是先分割出這兩種的圖像。
Thumbnail
先上成果圖,如果是螺母的話就標註 is circle來區分。 簡單的用圖表加文字說明AOI辨識 在此文章的範例中: 影像前處理:色彩空間轉換(灰階) -> 二值化閥值處理 演算法:尋找輪廓 數值判斷:長,寬,面積,周長 圖片來源 程式碼 import cv2 import nu
Thumbnail
先上成果圖,如果是螺母的話就標註 is circle來區分。 簡單的用圖表加文字說明AOI辨識 在此文章的範例中: 影像前處理:色彩空間轉換(灰階) -> 二值化閥值處理 演算法:尋找輪廓 數值判斷:長,寬,面積,周長 圖片來源 程式碼 import cv2 import nu
Thumbnail
介紹OpenCV中的cv2.matchTemplate和cv2.minMaxLoc函數的使用方法和參數,提供程式範例以及相關特徵匹配的詳細介紹,讓讀者對此有更深入的瞭解。
Thumbnail
介紹OpenCV中的cv2.matchTemplate和cv2.minMaxLoc函數的使用方法和參數,提供程式範例以及相關特徵匹配的詳細介紹,讓讀者對此有更深入的瞭解。
Thumbnail
[OpenCV應用][Python]找出圖像中的四個方位的邊緣點求出寬高 呈上篇應用Numpy找到的座標點,那我們如何捨棄掉差異過大的座標點呢? 可能圖像物件邊緣不佳,採樣就會差異過大,造成計算出的寬高是不準確的。 遇到這種狀況,就可以使用下方的程式範例來篩選座標點。 為求方便,此範例跟圖
Thumbnail
[OpenCV應用][Python]找出圖像中的四個方位的邊緣點求出寬高 呈上篇應用Numpy找到的座標點,那我們如何捨棄掉差異過大的座標點呢? 可能圖像物件邊緣不佳,採樣就會差異過大,造成計算出的寬高是不準確的。 遇到這種狀況,就可以使用下方的程式範例來篩選座標點。 為求方便,此範例跟圖
Thumbnail
觀看本文將可以學習到如何利用Numpy求得物件的邊緣點,及算出物件的寬跟高。 有詳細的程式邏輯說明,及各函式用法說明。 綠點及紅點則是採樣到的邊界點,比較粗的點是偵測到的最大值 完整程式碼 import cv2 import numpy as np import matplotl
Thumbnail
觀看本文將可以學習到如何利用Numpy求得物件的邊緣點,及算出物件的寬跟高。 有詳細的程式邏輯說明,及各函式用法說明。 綠點及紅點則是採樣到的邊界點,比較粗的點是偵測到的最大值 完整程式碼 import cv2 import numpy as np import matplotl
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News