付費限定

[OpenCV][Python]使用GrabCut 來去背,根據UI上畫的框來當參考背景前景

更新於 發佈於 閱讀時間約 26 分鐘

[OpenCV][Python]使用GrabCut 來去背

在上篇文章提到如何用GrabCut 來去背,但都是處於比較基礎的方式,讓演算法自行判斷前景背景,本文主要說明,使用設定參數讓演算法計算得更加準確,可根據UI上的圖顯示,用滑鼠畫區域來設定參考的背景與前景。

UI圖顯示

步驟,先載圖,在選擇畫前景還是背景,兩個都畫好後,在按RUN

raw-image

黑線代表前景畫的,紅線代表背景畫的,可重複畫

raw-image
以行動支持創作者!付費即可解鎖
本篇內容共 10322 字、0 則留言,僅發佈於[Python][OpenCV]學習心得筆記你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
螃蟹_crab的沙龍
143會員
253內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。
螃蟹_crab的沙龍的其他內容
2025/04/01
1. 概述 在光學字符識別(OCR)過程中,常見的問題之一是「斷字」,即原本應為一個完整字符的部分被錯誤地分割成兩個或多個獨立的字符。這通常發生在掃描文件、圖像降噪或影像二值化處理後。本篇文章將介紹一種基於 骨架化端點距離分析 的斷字檢測方法,並提供完整的 Python 實作。 2. 斷字檢測的
Thumbnail
2025/04/01
1. 概述 在光學字符識別(OCR)過程中,常見的問題之一是「斷字」,即原本應為一個完整字符的部分被錯誤地分割成兩個或多個獨立的字符。這通常發生在掃描文件、圖像降噪或影像二值化處理後。本篇文章將介紹一種基於 骨架化端點距離分析 的斷字檢測方法,並提供完整的 Python 實作。 2. 斷字檢測的
Thumbnail
2025/03/13
本教學將介紹如何使用 OpenCV 來檢測螺絲的鎖附間距,並提供完整的 Python 程式碼來實作這項功能。 🔹 1. 設計目標 使用二值化處理與形態學運算來強化影像 計算螺絲之間的間距 視覺化結果,標記最大間距並顯示數值 🔹 2. 測試用螺絲影像 🔹 3.
Thumbnail
2025/03/13
本教學將介紹如何使用 OpenCV 來檢測螺絲的鎖附間距,並提供完整的 Python 程式碼來實作這項功能。 🔹 1. 設計目標 使用二值化處理與形態學運算來強化影像 計算螺絲之間的間距 視覺化結果,標記最大間距並顯示數值 🔹 2. 測試用螺絲影像 🔹 3.
Thumbnail
2025/01/18
我們將學習如何使用 Python 和 OpenCV 實現圖像的主色提取與重新著色。 以下的程式碼展示了如何通過 KMeans 聚類演算法分析圖像,提取 HSV 色彩空間中的主色,並將圖像重新著色,提取想偵測的物件的顏色。 在官網案例,實作為RGB色彩空間,但如果套用HSV色彩空間則會因為H色
Thumbnail
2025/01/18
我們將學習如何使用 Python 和 OpenCV 實現圖像的主色提取與重新著色。 以下的程式碼展示了如何通過 KMeans 聚類演算法分析圖像,提取 HSV 色彩空間中的主色,並將圖像重新著色,提取想偵測的物件的顏色。 在官網案例,實作為RGB色彩空間,但如果套用HSV色彩空間則會因為H色
Thumbnail
看更多
你可能也想看
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
[OpenCV][Python]使用GrabCut 來去背 在上篇文章提到如何用GrabCut 來去背,但都是處於比較基礎的方式,讓演算法自行判斷前景背景,本文主要說明,使用設定參數讓演算法計算得更加準確,可根據UI上的圖顯示,用滑鼠畫區域來設定參考的背景與前景。 UI圖顯示 步驟,先載圖,在
Thumbnail
[OpenCV][Python]使用GrabCut 來去背 在上篇文章提到如何用GrabCut 來去背,但都是處於比較基礎的方式,讓演算法自行判斷前景背景,本文主要說明,使用設定參數讓演算法計算得更加準確,可根據UI上的圖顯示,用滑鼠畫區域來設定參考的背景與前景。 UI圖顯示 步驟,先載圖,在
Thumbnail
iPhone也有去背的功能,那麼OpenCV能不能做到這件事呢?,答案是可以的 如果圖像背景簡單且與前景有明顯的顏色區分,可以使用 色彩空間轉換 或 閥值分割。 如果背景較為複雜一點點,但你可以提供一個大致的前景位置,則可以使用 GrabCut。 結果圖 但在背景相當複雜的情況下,結果就不太
Thumbnail
iPhone也有去背的功能,那麼OpenCV能不能做到這件事呢?,答案是可以的 如果圖像背景簡單且與前景有明顯的顏色區分,可以使用 色彩空間轉換 或 閥值分割。 如果背景較為複雜一點點,但你可以提供一個大致的前景位置,則可以使用 GrabCut。 結果圖 但在背景相當複雜的情況下,結果就不太
Thumbnail
用小畫家隨意畫三個圈分別用紅藍綠,我們利用cv2.inRange與搭配cv2.bitwise_and,將紅球過濾出來吧。 程式範例 因為OpenCV中cv2.imread讀取圖檔預設讀取是為[B,G,R]的格式,所以設置紅色範圍要注意設定在R的範圍內。
Thumbnail
用小畫家隨意畫三個圈分別用紅藍綠,我們利用cv2.inRange與搭配cv2.bitwise_and,將紅球過濾出來吧。 程式範例 因為OpenCV中cv2.imread讀取圖檔預設讀取是為[B,G,R]的格式,所以設置紅色範圍要注意設定在R的範圍內。
Thumbnail
觀看本文將可以學習到如何利用Numpy求得物件的邊緣點,及算出物件的寬跟高。 有詳細的程式邏輯說明,及各函式用法說明。 綠點及紅點則是採樣到的邊界點,比較粗的點是偵測到的最大值 完整程式碼 import cv2 import numpy as np import matplotl
Thumbnail
觀看本文將可以學習到如何利用Numpy求得物件的邊緣點,及算出物件的寬跟高。 有詳細的程式邏輯說明,及各函式用法說明。 綠點及紅點則是採樣到的邊界點,比較粗的點是偵測到的最大值 完整程式碼 import cv2 import numpy as np import matplotl
Thumbnail
本文將介紹影像的基本操作包括:影像的讀取、顯示、保存,以及一些常見的操作如裁剪、旋轉、縮放等。 語法介紹 讀取影像: cv2.imread函數的參數是影像的檔案路徑。讀取後的影像以NumPy的ndarray形式表示。
Thumbnail
本文將介紹影像的基本操作包括:影像的讀取、顯示、保存,以及一些常見的操作如裁剪、旋轉、縮放等。 語法介紹 讀取影像: cv2.imread函數的參數是影像的檔案路徑。讀取後的影像以NumPy的ndarray形式表示。
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News