將1~10的正整數分成兩組求絕對值總和

更新於 發佈於 閱讀時間約 2 分鐘

分享一道數學證明題
題目是將1~10的正整數分成兩組,分別為A組、B組
其中A組數字由小到大排列,分別為a1,a2,a3,a4,a5,代表a1<a2<a3<a4<a5
B組數字則是由大到小排列,分別為b1,b2,b3,b4,b5,代表b1>b2>b3>b4>b5
試求|a1-b1|+|a2-b2|+|a3-b3|+|a4-b4|+|a5-b5|之值為何?
另外若有解,可否用一個嚴謹的證明過程證明?

為不懂數學的朋友補充一下(也可以說是複習),||這個符號是絕對值 
若裡面是正數則可以直接拿掉,若裡面是負數,則將負號拿掉 
例如|3|=3,|-4|=4


先說一下,這題我也不知道怎麼證明,但如果嘗試過幾次,每次都會得到相同的答案
:25

我們先試著找出所有的可能
把10個數字平分成兩組的組合性有多少種呢?我們可以用高中的排列組合來做計算:
C10取5×C5取5/2!=126種
(排列組合的計算方式有機會再講解吧~)

難道要把126種全部表列出來作計算?這也太可怕。我有請ChatGPT幫忙,雖然我對寫程式一竅不通,但ChatGPT算了很久之後告訴我,全部的組合計算出來都是25
(圖和程式碼太長我就不貼了~把上面那段問題複製貼上問ChatGPT就可以了)
但如果要求ChatGPT來證明的話...它會開始繞圈子,得到一些怪怪的答案,

不過我們還是可以嘗試幾種來觀察看看

第一組:A組1,3,5,7,9 B組10,8,6,4,2
|1-10|+|3-8|+|5-6|+|7-4|+|9-2|=9+5+1+3+7=25

第二組:A組1,2,3,4,5 B組10,9,8,7,6
|1-10|+|2-9|+|3-8|+|4-7|+|5-6|=9+7+5+3+1=25

如果把第二組當中的5和6互換位置,可以得到:
第三組:A組1,2,3,4,6 B組10,9,8,7,5
|1-10|+|2-9|+|3-8|+|4-7|+|6-5|=9+7+5+3+1=25

可以發現第二、第三組只有最後一項不同,但因為絕對值的關係,計算過程完全一樣

如果再作一點點微調

第四組:A組1,2,3,4,7 B組10,9,8,6,5
|1-10|+|2-9|+|3-8|+|4-6|+|7-5|=9+7+5+2+2=25

第四組數字稍有不同 過程也略有改變 但結果還是相同的25

這就是我的極限了~

如果大家有甚麼想法歡迎留言讓我知道

跟大家分享我的想法以及我的所見所聞 很多事情沒有對錯 多想想 多思考
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~