[OpenCV基礎][Python]影像增強_伽瑪校正Gamma correction

閱讀時間約 5 分鐘

伽瑪校正(Gamma correction)被視為影像增強的一種方法之一。

通過調整 gamma 值,可以改變圖像的亮度和對比度,從而使圖像更清晰或更具有視覺效果。

以下將利用cv2.LUTnumpy的組合實現伽瑪校正,及詳細介紹cv2.LUT 函式應用。

不同伽瑪校正結果

不同伽瑪校正結果


函式介紹

cv2.LUT 函式的介紹:

用於進行查找表 (Look-Up Table, LUT) 的映射操作。在影像處理中,查找表是一種將輸入值映射到輸出值的機制,常用於進行顏色轉換、亮度調整等操作。

dst = cv2.LUT(src, lut)
  • src: 原始影像,一般是一個 NumPy 陣列。
  • lut: 查找表,也是一個 NumPy 陣列,通常是一行 256 列的陣列,每列對應一個像素值的映射關係。

cv2.LUT 函式可以想像成一張表格,裡面記錄了對應關係。比如,原始圖像中每個像素的數值(0 到 255)在這張表格中都有對應的新數值。當我們使用 cv2.LUT 函式時,它就會根據這張表格,把原始圖像的每個像素的數值轉換成表格中對應的新數值,最後生成一張新的圖像。


只將紅色通道進行放大

結果圖



紅色通道放大的圖

紅色通道放大的圖

程式範例

import cv2
import numpy as np

# 讀取彩色圖像
image = cv2.imread('./111.jpg')

# 提取紅色通道
red_channel = image[:, :, 2]

# 定義放大紅色通道的查找表
lut = np.arange(256, dtype=np.uint8)
lut = np.clip(2 * lut, 0, 255).astype(np.uint8)

# 將查找表應用到紅色通道上
enhanced_red_channel = cv2.LUT(red_channel, lut)

# 將放大後的紅色通道放回原始圖像中
image[:, :, 2] = enhanced_red_channel

# 顯示原始圖像和放大紅色通道後的圖像
cv2.imshow('Original Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

np.clip用於將陣列中的元素限制在某個範圍內

numpy.clip(a, a_min, a_max, out=None)
  • a:要進行操作的輸入陣列。
  • a_min:設定的最小值,小於這個值的元素將被設置為 a_min
  • a_max:設定的最大值,大於這個值的元素將被設置為 a_max
  • out:可選,用於指定結果的輸出陣列。

np.clip()a 中的每個元素限制在 a_mina_max 之間

小於 a_min 的元素被設置為 a_min

大於 a_max 的元素被設置為 a_max

避免像素值溢出或超出範圍


伽瑪校正

結果圖

比較圖

比較圖

程式範例

import cv2
import numpy as np

# 讀取圖檔
img = cv2.imread('./123.png')

def gamma_correction(img: np.ndarray, gamma: float) -> np.ndarray:
look_up_table = (pow(np.arange(256) / 255, gamma) *
255).astype(np.uint8).reshape((1, 256))

res = cv2.LUT(img, look_up_table) #LUT,將look_up_table輸出進而改變亮度或曝光
return res

res = gamma_correction(img,2)

# 顯示結果圖像
cv2.imshow('reuslt', res)
cv2.waitKey(0)
cv2.destroyAllWindows()


look_up_table = (pow(np.arange(256) / 255, gamma) * 255).astype(np.uint8).reshape((1, 256))

這一行代碼創建了一個查找表 (look_up_table),實現於對每個像素值進行 gamma 校正。它的具體步驟是:

  1. np.arange(256) / 255:創建一個從 0 到 255 的數組,然後除以 255,將像素值的範圍調整為 0 到 1 之間。
  2. pow(..., gamma):對每個值進行 gamma 次方運算,即 gamma 校正公式中的 (V / Vmax)^gamma。
  3. * 255:將校正後的值乘以 255,將值範圍調整回 0 到 255 之間。
  4. .astype(np.uint8):將數組轉換為無符號 8 位整數型別,這是圖像像素值的常見表示方式。
  5. .reshape((1, 256)):將數組調整為一行 256 列的形狀,這是 OpenCV 中 LUT 函式所需的查找表形式。

有關伽瑪校正我在網路上看到不錯的介紹






119會員
201內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。
留言0
查看全部
發表第一個留言支持創作者!
螃蟹_crab的沙龍 的其他內容
介紹OpenCV中的cv2.matchTemplate和cv2.minMaxLoc函數的使用方法和參數,提供程式範例以及相關特徵匹配的詳細介紹,讓讀者對此有更深入的瞭解。
[OpenCV應用][Python]找出圖像中的四個方位的邊緣點求出寬高 呈上篇應用Numpy找到的座標點,那我們如何捨棄掉差異過大的座標點呢? 可能圖像物件邊緣不佳,採樣就會差異過大,造成計算出的寬高是不準確的。 遇到這種狀況,就可以使用下方的程式範例來篩選座標點。 為求方便,此範例跟圖
使用反三角函數鐘的反正切函數 math.atan2() 計算出兩個座標之間的角度。 實現方法 邊界的最大最小值,相減求得對邊,鄰邊由檢測ROI的寬或高,求得角度 定義旋轉方向性,由邊界最大最小值的座標位子得知,旋轉方向性 程式範例 利用圖中白色物體的上邊界兩個座標點位,算出物體旋轉角度。
觀看本文將可以學習到如何利用Numpy求得物件的邊緣點,及算出物件的寬跟高。 有詳細的程式邏輯說明,及各函式用法說明。 綠點及紅點則是採樣到的邊界點,比較粗的點是偵測到的最大值 完整程式碼 import cv2 import numpy as np import matplotl
瞭解二值化影像的應用和程式語法,包括物體檢測和分割、邊緣檢測、圖像分析和測量、文檔辨識,以及使用cv2.threshold的參數和程式範例。
在影像處理中,我們總是想要讓特徵更加明顯一點,可以使用銳利化的方式將特徵的邊緣增強,提升影像的細節,圖像銳利後就會有提升解析度的感覺。 拉普拉斯運算子是一種常用於影像增強的方法之一,特別是用於提高影像的邊緣和細節。 在OpenCV中,你可以使用cv2.Laplacian函數來應用拉普拉斯運算子。
介紹OpenCV中的cv2.matchTemplate和cv2.minMaxLoc函數的使用方法和參數,提供程式範例以及相關特徵匹配的詳細介紹,讓讀者對此有更深入的瞭解。
[OpenCV應用][Python]找出圖像中的四個方位的邊緣點求出寬高 呈上篇應用Numpy找到的座標點,那我們如何捨棄掉差異過大的座標點呢? 可能圖像物件邊緣不佳,採樣就會差異過大,造成計算出的寬高是不準確的。 遇到這種狀況,就可以使用下方的程式範例來篩選座標點。 為求方便,此範例跟圖
使用反三角函數鐘的反正切函數 math.atan2() 計算出兩個座標之間的角度。 實現方法 邊界的最大最小值,相減求得對邊,鄰邊由檢測ROI的寬或高,求得角度 定義旋轉方向性,由邊界最大最小值的座標位子得知,旋轉方向性 程式範例 利用圖中白色物體的上邊界兩個座標點位,算出物體旋轉角度。
觀看本文將可以學習到如何利用Numpy求得物件的邊緣點,及算出物件的寬跟高。 有詳細的程式邏輯說明,及各函式用法說明。 綠點及紅點則是採樣到的邊界點,比較粗的點是偵測到的最大值 完整程式碼 import cv2 import numpy as np import matplotl
瞭解二值化影像的應用和程式語法,包括物體檢測和分割、邊緣檢測、圖像分析和測量、文檔辨識,以及使用cv2.threshold的參數和程式範例。
在影像處理中,我們總是想要讓特徵更加明顯一點,可以使用銳利化的方式將特徵的邊緣增強,提升影像的細節,圖像銳利後就會有提升解析度的感覺。 拉普拉斯運算子是一種常用於影像增強的方法之一,特別是用於提高影像的邊緣和細節。 在OpenCV中,你可以使用cv2.Laplacian函數來應用拉普拉斯運算子。
你可能也想看
Google News 追蹤
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
Faker昨天真的太扯了,中國主播王多多點評的話更是精妙,分享給各位 王多多的點評 「Faker是我們的處境,他是LPL永遠繞不開的一個人和話題,所以我們特別渴望在決賽跟他相遇,去直面我們的處境。 我們曾經稱他為最高的山,最長的河,以為山海就是盡頭,可是Faker用他28歲的年齡...
Thumbnail
當我們在進行影像處理時, 在Python的世界最常聽到的就是OpenCV, 而我們在處理影片時也會想要僅針對某時間段的影片進行處理, 今天我們就來教您如何透過OpenCV來讀取特定的時間區段。 在進入主題之前, 有一些基本概念務必先行建立, 一個影片是由多張圖片組成的, 因此最小單元為一張圖
Thumbnail
點陣圖 點陣圖是由許多方格像素組成的圖片, 因此我們常常在將圖片放大時會呈現像是馬賽克的狀況, 假設期望圖片越清晰那所需要的像素會較多個, 因此空間耗用量也相對較大。 常見的格式有: .JPG .PNG .GIF .BMP .TIFF等格式。 繪製程式碼: 向量圖 向量
Thumbnail
繼上次分享的「【🔒 影像辨識 - 影像處理】Ep.1 關於影像的基本單位, 相信我們對於影像的儲存應該有了基本的認識了, 那麼接下來我們會需要的是了解顏色的組成。 我們除了在文章裡講述概念之外, 也會提供實作的數位作品分享給大家, 請大家根據範例學習與練習。 關於顏色 灰階的時代 早期尚未
Thumbnail
歡迎來到「阿Han的軟體心法實戰營 - 影像處理」系列的文章區,我們會針對影像處理的相關知識、開發技巧進行分享,並教你手把手用程式寫出屬於自己的影像處理程式, 當然也會包括AI模型訓練的部分,就讓我們一起來探索影像處理的領域吧! 在進入影像辨識的世界之前, 我們先來了解一下關於解析度的基本概念吧!
Thumbnail
在樹莓派安裝OpenCV的紀錄。板子是樹莓派3B(沒有+),系統raspbian bullseye 32bit灌到USB隨身碟。
Thumbnail
#安裝 OpenCV 相關套件 pip install opencv-python pip install opencv-contrib-python pip install matplotlib
Haar Cascade classifier OpenCV 官方 Github:https://github.com/opencv/opencv/tree/4.x/data 人臉特徵模型:haarcascade_frontalface_default.xml 資料來源: https://steam
Thumbnail
OpenCV 讀取圖片 原碼:https://reurl.cc/3354ZL 成果: OpenCV 本身有提供讀取圖檔的函數可用,讀取圖檔,只要呼叫 cv2.imread 即可將圖片讀取進來,以 cv2.imread 讀進來的資料,會儲存成一個 NumPy 的陣列。 將圖片讀取進來之後,可使用 c
opencv is use BGR color matplotlib is use RGB color 顯示圖片 opencv matplotlib
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
美國總統大選只剩下三天, 我們觀察一整週民調與金融市場的變化(包含賭局), 到本週五下午3:00前為止, 誰是美國總統幾乎大概可以猜到60-70%的機率, 本篇文章就是以大選結局為主軸來討論近期甚至到未來四年美股可能的改變
Thumbnail
Faker昨天真的太扯了,中國主播王多多點評的話更是精妙,分享給各位 王多多的點評 「Faker是我們的處境,他是LPL永遠繞不開的一個人和話題,所以我們特別渴望在決賽跟他相遇,去直面我們的處境。 我們曾經稱他為最高的山,最長的河,以為山海就是盡頭,可是Faker用他28歲的年齡...
Thumbnail
當我們在進行影像處理時, 在Python的世界最常聽到的就是OpenCV, 而我們在處理影片時也會想要僅針對某時間段的影片進行處理, 今天我們就來教您如何透過OpenCV來讀取特定的時間區段。 在進入主題之前, 有一些基本概念務必先行建立, 一個影片是由多張圖片組成的, 因此最小單元為一張圖
Thumbnail
點陣圖 點陣圖是由許多方格像素組成的圖片, 因此我們常常在將圖片放大時會呈現像是馬賽克的狀況, 假設期望圖片越清晰那所需要的像素會較多個, 因此空間耗用量也相對較大。 常見的格式有: .JPG .PNG .GIF .BMP .TIFF等格式。 繪製程式碼: 向量圖 向量
Thumbnail
繼上次分享的「【🔒 影像辨識 - 影像處理】Ep.1 關於影像的基本單位, 相信我們對於影像的儲存應該有了基本的認識了, 那麼接下來我們會需要的是了解顏色的組成。 我們除了在文章裡講述概念之外, 也會提供實作的數位作品分享給大家, 請大家根據範例學習與練習。 關於顏色 灰階的時代 早期尚未
Thumbnail
歡迎來到「阿Han的軟體心法實戰營 - 影像處理」系列的文章區,我們會針對影像處理的相關知識、開發技巧進行分享,並教你手把手用程式寫出屬於自己的影像處理程式, 當然也會包括AI模型訓練的部分,就讓我們一起來探索影像處理的領域吧! 在進入影像辨識的世界之前, 我們先來了解一下關於解析度的基本概念吧!
Thumbnail
在樹莓派安裝OpenCV的紀錄。板子是樹莓派3B(沒有+),系統raspbian bullseye 32bit灌到USB隨身碟。
Thumbnail
#安裝 OpenCV 相關套件 pip install opencv-python pip install opencv-contrib-python pip install matplotlib
Haar Cascade classifier OpenCV 官方 Github:https://github.com/opencv/opencv/tree/4.x/data 人臉特徵模型:haarcascade_frontalface_default.xml 資料來源: https://steam
Thumbnail
OpenCV 讀取圖片 原碼:https://reurl.cc/3354ZL 成果: OpenCV 本身有提供讀取圖檔的函數可用,讀取圖檔,只要呼叫 cv2.imread 即可將圖片讀取進來,以 cv2.imread 讀進來的資料,會儲存成一個 NumPy 的陣列。 將圖片讀取進來之後,可使用 c
opencv is use BGR color matplotlib is use RGB color 顯示圖片 opencv matplotlib