付費限定

【🔒 MLOps - Airflow】工作流自動化平台的超入門簡介

閱讀時間約 5 分鐘

我們在「【MLOps - MLflow】AI模型實驗管理的超入門簡介」有介紹到模型實驗的追蹤管理平台, 雖然可以幫助我們自動化記錄實驗參數、模型…等數據, 但我們也會希望模型的訓練可以更加的自動化, 而Airflow正好就具備流程設計與管理的功能, 我們可以彈性的設計在某個時間點從某個數據集自動訓練一個模型, 這正是讓我們的模型生產工業化的重要工具之一。


以行動支持創作者!付費即可解鎖
本篇內容共 1810 字、0 則留言,僅發佈於🔒 阿Han的軟體心法實戰營你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
avatar-img
116會員
257內容數
哈囉,我是阿Han,是一位 👩‍💻 軟體研發工程師,喜歡閱讀、學習、撰寫文章及教學,擅長以圖代文,化繁為簡,除了幫助自己釐清思路之外,也希望藉由圖解的方式幫助大家共同學習,甚至手把手帶您設計出高品質的軟體產品。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
阿Han的沙龍 的其他內容
Generator能夠讓我們在需要資料時才產生資料, 原理很像Kafka的Consumer, 它在處理大量數據時非常的有幫助, 讓我們資料一小塊一小塊的流到目的地, 流式的設計對於串流的應用程式來說非常的重要, 如果您正在設計一套串流的應用程式, 那麼學好Generator會非常的重要, 除了讓
上集回顧「【🔒Message Queue - Kafka】Schema Registry EP.1 傳輸訊息的標準格式制定者 」, 我們在文章中有提到當Schema升級時, 會衍生一些問題, 那這些問題主要是Schema Registry會根據我們的相容性策略來驗證新版的Schema是否合法, 這
我們在「【Message Queue - Kafka】串流時代的超入門簡介」有介紹到關於Kafka的基礎概念, 那麼本章節主要著重於生產者(Producer)的面向來細部探討, 看看生產者(Producer)究竟是什麼? 有哪些應該要注意的? 我們今天的主題除了說明生產者(Producer)的
我們在「【Message Queue - Kafka】不斷的試誤…, 用Docker來嘗試安裝Kafka」有介紹如何架設kafka, 其中我們使用環境變數來進行kafka的配置, 但除了環境變數之外, 其實還能夠用檔案配置的方式來對kafka進行配置, 如此一來我們就可以將配置檔與啟動檔完全分開,
序幕 又來到一年一度的年中的時刻了, 不免得要來復盤一下今年的軟體學習與開發上面有了哪些的進步與轉變, 很有意思的是今年加入了AI的元素, 其實早在去年我們就分享了一篇「【🔒 江湖一點訣】關於寫作,你不需要很厲害才開始,但你從現在開始就可以很厲害」, 裡面包含了我們長期累積的心得之外, 早就已經
上集回顧 上集我們提到「【語音辨識引擎sherpa-onnx CPU上篇】讓您輕鬆體驗語音辨識功能(Docker架設)」, 相信大家對於sherpa-onnx具備一定的基本概念並學會如何架設了吧! 如果還不會的兄弟姊妹們別擔心, 歡迎底下留言, 我們會盡量的協助您直到學會為止, 那麼雖然CPU版本
Generator能夠讓我們在需要資料時才產生資料, 原理很像Kafka的Consumer, 它在處理大量數據時非常的有幫助, 讓我們資料一小塊一小塊的流到目的地, 流式的設計對於串流的應用程式來說非常的重要, 如果您正在設計一套串流的應用程式, 那麼學好Generator會非常的重要, 除了讓
上集回顧「【🔒Message Queue - Kafka】Schema Registry EP.1 傳輸訊息的標準格式制定者 」, 我們在文章中有提到當Schema升級時, 會衍生一些問題, 那這些問題主要是Schema Registry會根據我們的相容性策略來驗證新版的Schema是否合法, 這
我們在「【Message Queue - Kafka】串流時代的超入門簡介」有介紹到關於Kafka的基礎概念, 那麼本章節主要著重於生產者(Producer)的面向來細部探討, 看看生產者(Producer)究竟是什麼? 有哪些應該要注意的? 我們今天的主題除了說明生產者(Producer)的
我們在「【Message Queue - Kafka】不斷的試誤…, 用Docker來嘗試安裝Kafka」有介紹如何架設kafka, 其中我們使用環境變數來進行kafka的配置, 但除了環境變數之外, 其實還能夠用檔案配置的方式來對kafka進行配置, 如此一來我們就可以將配置檔與啟動檔完全分開,
序幕 又來到一年一度的年中的時刻了, 不免得要來復盤一下今年的軟體學習與開發上面有了哪些的進步與轉變, 很有意思的是今年加入了AI的元素, 其實早在去年我們就分享了一篇「【🔒 江湖一點訣】關於寫作,你不需要很厲害才開始,但你從現在開始就可以很厲害」, 裡面包含了我們長期累積的心得之外, 早就已經
上集回顧 上集我們提到「【語音辨識引擎sherpa-onnx CPU上篇】讓您輕鬆體驗語音辨識功能(Docker架設)」, 相信大家對於sherpa-onnx具備一定的基本概念並學會如何架設了吧! 如果還不會的兄弟姊妹們別擔心, 歡迎底下留言, 我們會盡量的協助您直到學會為止, 那麼雖然CPU版本
你可能也想看
Google News 追蹤
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
11/20日NVDA即將公布最新一期的財報, 今天Sell Side的分析師, 開始調高目標價, 市場的股價也開始反應, 未來一週NVDA將重新回到美股市場的焦點, 今天我們要分析NVDA Sell Side怎麼看待這次NVDA的財報預測, 以及實際上Buy Side的倉位及操作, 從
Thumbnail
Hi 大家好,我是Ethan😊 相近大家都知道保濕是皮膚保養中最基本,也是最重要的一步。無論是在畫室裡長時間對著畫布,還是在旅途中面對各種氣候變化,保持皮膚的水分平衡對我來說至關重要。保濕化妝水不僅能迅速為皮膚補水,還能提升後續保養品的吸收效率。 曾經,我的保養程序簡單到只包括清潔和隨意上乳液
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在某些情況下,別人提供的 Pretrained Transformer Model 效果不盡人意,可能會想要自己做 Pretrained Model,但是這會耗費大量運
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 114 建立了 Transformer 模型,並在 AI說書 - 從0開始 - 115 載入權重並執行 Tokenizing,現
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 下游任務是一個 Fine-Tuned 的 Transformer 任務,它從預先訓練的 Transformer 模型繼承模型和參數,故,下游任務是運行微調任務的預訓練模
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 86 提及 SuperGLUE 任務清單,當中會包含以下欄位: 名稱 (Name):經過微調的預訓練模型的下游任務的名稱 標識符
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 82 到 AI說書 - 從0開始 - 85 的說明,有一個很重要的結論:最適合您的模型不一定是排行榜上最好的模型,您需要學習 NLP 評
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 繼 AI說書 - 從0開始 - 82 與 xxx ,我們談論了衡量 AI 模型的方式,那當你訓練的模型比 State-of-the-Art 還要好並想要進行宣稱時,需要
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer模型驅動的人工智慧正在將無所不在的一切連接起來,機器直接與其他機器通訊,人工智慧驅動的物聯網訊號無需人工干預即可觸發自動決策。 自然語言處理演算法
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 20中,闡述GPT模型的Supervised and Unsupervised觀點,接著一樣引述書籍:Transformers f
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
11/20日NVDA即將公布最新一期的財報, 今天Sell Side的分析師, 開始調高目標價, 市場的股價也開始反應, 未來一週NVDA將重新回到美股市場的焦點, 今天我們要分析NVDA Sell Side怎麼看待這次NVDA的財報預測, 以及實際上Buy Side的倉位及操作, 從
Thumbnail
Hi 大家好,我是Ethan😊 相近大家都知道保濕是皮膚保養中最基本,也是最重要的一步。無論是在畫室裡長時間對著畫布,還是在旅途中面對各種氣候變化,保持皮膚的水分平衡對我來說至關重要。保濕化妝水不僅能迅速為皮膚補水,還能提升後續保養品的吸收效率。 曾經,我的保養程序簡單到只包括清潔和隨意上乳液
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在某些情況下,別人提供的 Pretrained Transformer Model 效果不盡人意,可能會想要自己做 Pretrained Model,但是這會耗費大量運
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 114 建立了 Transformer 模型,並在 AI說書 - 從0開始 - 115 載入權重並執行 Tokenizing,現
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 下游任務是一個 Fine-Tuned 的 Transformer 任務,它從預先訓練的 Transformer 模型繼承模型和參數,故,下游任務是運行微調任務的預訓練模
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 延續 AI說書 - 從0開始 - 86 提及 SuperGLUE 任務清單,當中會包含以下欄位: 名稱 (Name):經過微調的預訓練模型的下游任務的名稱 標識符
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 82 到 AI說書 - 從0開始 - 85 的說明,有一個很重要的結論:最適合您的模型不一定是排行榜上最好的模型,您需要學習 NLP 評
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 繼 AI說書 - 從0開始 - 82 與 xxx ,我們談論了衡量 AI 模型的方式,那當你訓練的模型比 State-of-the-Art 還要好並想要進行宣稱時,需要
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer 可以透過繼承預訓練模型 (Pretrained Model) 來微調 (Fine-Tune) 以執行下游任務。 Pretrained Mo
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Transformer模型驅動的人工智慧正在將無所不在的一切連接起來,機器直接與其他機器通訊,人工智慧驅動的物聯網訊號無需人工干預即可觸發自動決策。 自然語言處理演算法
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 20中,闡述GPT模型的Supervised and Unsupervised觀點,接著一樣引述書籍:Transformers f