🧭 導讀:工程不是一條曲線
在基礎數學中,我們常看到:
y = f(x)
這代表:▪️ 一個原因
▪️ 對應一個結果
但在現實工程中,幾乎不存在這種單純關係。
🧩 一、真實系統的基本樣貌
實際系統更接近:
y = f(x1, x2, x3, ..., xn)
代表:
▪️ 多個因素同時影響
▪️ 彼此交互作用
⚙️ 二、單變數模型的極限
單變數模型的假設:
▪️ 只有一個變數在變
▪️ 其他全部固定
這在真實世界中:
▶︎ 幾乎不成立
🌐 三、多變數的工程意義
多變數模型能描述:
▪️ 電壓 × 電流 × 溫度
▪️ 頻率 × 雜訊 × 功率
▪️ 負載 × 速度 × 扭矩
📐 四、幾何直覺轉換
單變數:
▪️ 曲線
雙變數:
▪️ 曲面
三變數:
▪️ 空間分佈
🧠 五、工程師的思考方式改變
從:
▶︎ x 變了會怎樣?
轉為:
▶︎ 哪個變數最敏感?
▶︎ 哪些變數可忽略?
▶︎ 變數如何耦合?
🧾 六、工程版一句話總結
工程分析,是在多維空間中找規律。
🧠 七、本單元你應該建立的直覺
✔︎ 真實系統一定多變數
✔︎ 單變數只是近似
✔︎ 建模先列變數
✏️ 八、數學練習題:從單變數斜率到多變數敏感度
考慮一個系統輸出:
y = x² + 3xz + 2z²
其中 x 與 z 為兩個可變參數。
(1)若 z 固定為常數,y 對 x 的變化率為何?
求:
dy/dx
(2)若 x 固定為常數,y 對 z 的變化率為何?
求:
dy/dz
(3)工程思考題
若目前系統工作點為:
x = 2
z = 1
比較:
dy/dx 與 dy/dz 的數值大小。
哪一個變數在此工作點下對 y 影響較大?
✅ 參考解答
(1)對 x 偏微分:
dy/dx = 2x + 3z
(2)對 z 偏微分:
dy/dz = 3x + 4z
(3)代入 x = 2,z = 1:
dy/dx = 2(2) + 3(1) = 7
dy/dz = 3(2) + 4(1) = 10
因此:
在此工作點下
👉 z 比 x 更敏感
🎯 本題想建立的工程直覺
✔ 同一個系統
✔ 不同操作點
✔ 主導變數可能不同
🧠 對應回本單元核心
工程師不是只問:
x 變了會怎樣?
而是會問:
👉 在「目前狀態」下
👉 誰的影響最大?
這正是多變數工程思維的起點。













