Datadog (DDOG) — 雲端監控平台(MaaS,Monitoring as a Service)

閱讀時間約 6 分鐘
歡迎追蹤Facebook粉絲團:https://www.facebook.com/frankuslife
當前大多數的雲端軟體均建立在複雜的Tech stack之上,因此在解決問題前常常需要花費大量的時間找到原因,相信許多業內的工程師或者是IT人員都曾經歷過花費數小時找到原因卻只花短短的時間解決問題的窘境。舉例來說在大公司內部可能你的Application是部署在private cloud之上,然後log卻又是輸出在內部的另一套系統,因此你必須開啟許多的視窗來做cross reference的動作。這種繁複的過程對公司IT造成了困擾,也降低開發人員在維護以及除錯的的效率。Datadog(DDOG)於是開發了一套整合型的監控工具且採用Pay as you go近年熱門的訂閱制,在平台上的Dashboard App/Infrastructure Overview主要分成了三個部分(Metrics,Trace and Log)。
Metric:指的是Infrastructure Metrics,例如:CPU/Memory使用率,Active Users,Database connection,System Load,Visualized Server Nodes。
Trace:指的是Application的追蹤紀錄。例如:Request Error rate,Request Latency,Total Requests。
Log:顧名思義就是所有Infrastructure以及Application的Log,尤其對個別Request的統計資料,例如Internal Server Error(500)發生了幾次,Error log的Stack Trace。
Datadog是第一間將這些資訊整合到同一個平台的公司,達到減少Cross Reference需要的時間,更迅速且清楚地即時監控Infrastructure/Application運作的情形,以及提供市場部門參考的數據(例如:最多人使用的功能)。
Datadog Product Release Timeline
Infrastructure Monitoring
Infrastructure Monitoring:這是Datadog最早對外公佈的功能,能即時對Infrastructure(CPU,Memory,Container,Database等等)實施監控確保系統的Availability,經由視覺化(visualization)以及建立與log或者歷史數據之間的聯繫,提供了整體系統的宏觀。
Service Map
APM(Application Performance Monitoring):追蹤且分析Application的使用情形,例如哪些api被呼叫以及被誰呼叫,錯誤碼,延遲等等的訊息。透過客製化的Filter可以找出例如某個使用者的歷史紀錄,以及特定某行的source code,類似於browser的dev tool。除此之外,提供了許多的分析工具(例如:latency最高的前十個使用者) ,自動地將data flow轉成了service map減少開發人員找到root cause的時間,也建立了與Infrastructure以及log之間的關聯。
Log Management:Datadog目前提供超過350種以上可整合的Tools,基本上已經涵蓋絕大部分公司以及個人的需求。除了將Log整合到單一介面外,還提供可以Graph以及Alert(透過不同的channel,例如:Mail, Slack)的功能,甚至還有討論區的功能讓使用者可以在發生問題的地方直接留下自己的意見。基本的Search,Filter,Analyze和Export的功能當然是不可或缺的,開發人員可以透過Datadog的Restful API直接將這些功能整合至自己的產品打造客製化的Dashboard。
User Experience/Network Monitoring:這兩個是今年才公佈的新功能,User Experience基於數據分析模擬使用者行為且可用來比較真實User的使用情形。此外也能在不影響效能的情況下監控Network Traffic且也能圖形化。
最後對Datalog的業務提供點個人看法,大家可能覺得Datalog Platform的功能沒有新意,就是將所有Infrastructure以及Application的使用情形以及Log整合到了單一的平台,雖然在個別的Tool內肯定已經有內建專門的monitoring service,但開發者更需要能快速地理解不同Service之間的關聯,然後Datalog就是抓住這個痛點提供了相當完整的Monitoring Service,至於產品為什麼能成功,主要來自於現在Hybrid的開發環境已不像以前單純。不論是大型或者中小型公司,許多產品都整合了相當多thirdparty的功能,除非像Google,Microsoft這種員工數極高的公司,不然很少公司內部會有足夠的人力資源開發類似的工具,即使如此也不一定整合競爭對象的產品。我個人覺得只要能搶下足夠的客戶(公司規模:employee < 10000),都會是穩定中短期的收入來源,因其客戶的黏著度肯定不低。然而隱憂的就是即使整合了大部分市面常見的Tool,假使有競爭者加入這個市場且只對主流Tool進行整合,最後又提供價格破壞性的策略,那長期而言Market Share可能會不這麼穩定,畢竟就算市面上有1000+的Tool,但可能60%公司在使用的就是那固定的2–30個,因此Customer Retention Rate以及New customer growth絕對是需要長期注意的部分。
Datadog於今年九月IPO,而11/12也就是明天將在after market會公布IPO後的第一次財報,就目前IPO的S-1文件可以歸類一些大家比較看重的數據。
S-1 https://reurl.cc/lLz8YE

Financial Report
  • DBER (Dollar-based Retention Rate):2018年約為151%,而2019前半年為146%,相當驚豔的成長數據。
  • Customer Count:目前客戶數為8846,季成長約為7%。
  • Revenue:2019前半年為153.3M,YOY 79%,推估2019 Q2為82%,前整年Revenue約為332.9M。上半年有60%的營收成長來自於既有客戶,由此可知客戶滿意度極高。有些公司替超過一半的員工都註冊了Datadog,甚至超越了Engineer Team的總人數。
即將進入廣告,捲動後可繼續閱讀
為什麼會看到廣告
希望能將自己多年在美股投資的心得分享給需要的朋友們,內容會包含美股ETF,高成長股財報分享,幫助讀者們能根據自身風險承受能力打造長期的多元化的資產配置。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Alteryx這間公司主要是提供資料分析的模型,客戶透過基於purpose-driven的模型可以將資料轉換成有意義的business insight,官方提出平台有四大資料分析上的優勢(In-Database Analytics,Predictive Analytics,Data Mining
Alteryx這間公司主要是提供資料分析的模型,客戶透過基於purpose-driven的模型可以將資料轉換成有意義的business insight,官方提出平台有四大資料分析上的優勢(In-Database Analytics,Predictive Analytics,Data Mining
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
IaaS是一種雲端服務模型,所使用的運算資源託管在公有雲 、私有雲或混合雲中,能將傳統IT硬體設備統整為虛擬的運算資源,而得以針對運算需求彈性地調配資源。
Thumbnail
本文介紹了 Docker 的基礎概念,以及在軟體工程環境中的運用。藉由 Docker 的容器化技術和映像檔技術,能夠實現開發和生產環境的一致性,並且支持負載平衡和無縫更新。此外,也提到了 Kubernetes 和 Docker Swarm 這兩個重要工具的用途和適用對象。
Thumbnail
前年第一次藉公司機會,參加了DevOpsDay的活動。雖然devOps一詞各自表述,大多狀況還是偏向維運會遇到的技術為主,做為平時開發、跟使用者訪談需求的工作內容來說,參加聚會如果沒有一定的知識,對講者所提到的狀況比較難有共鳴...
Thumbnail
今天來聊個最近很夯的主題 DDD,但不是 DDD 的本尊 Domain Driven Design,而是無所不在的 Database Driven Design,Database Driven Design 不是不好,只是你的模型容易變成貧血模型,邏輯都集中在 service 層等等。
Thumbnail
本文將探討Kubernetes內部DNS解析的相關流程,並介紹如何利用DNS來找到服務。透過瞭解DNS的工作原理,可以讓應用服務的問題處理更有效率,並提供基本測試與結論。
1.5 Date Techonlogy DT時代的特徵是體驗,體驗就是感受。顧客要的不是服務,顧客要的是體驗。 2.4 在大數據時代,企業必須運用DT技術從資料收集至中探索巨大的價值,因為它能夠讓企業比顧客更懂顧客。DT技術運用方式 一、自動預測趨勢和行為 二、關聯性分析 三、分群
Thumbnail
※ 效能 What tools would you use to monitor or analyze your performance ? 中文意思:在監控或分析系統性能方面可能會使用哪些工具? ※ 解答: 常見的監控和分析工具,可分成以下6大類: 系統監控工具: 例如,Promethe
Thumbnail
大數據時代下,Log的多元應用至關重要。Log生成龐大,格式各異,特別金融業需合規。探討Log廣泛應用、資訊安全、IT管理和商業決策。建立Log管理系統核心深入法規,強化IT治理、權限控管。一站式Log管理平台,確保資訊安全合規。
Thumbnail
前言 上次我們針對 Docker 這樣容器化技術做了一點介紹,今天我們要來講解 Docker 架構,你是否發現在每次程式上伺服器的流程很麻煩呢 ? 是否發現你寫的程式在別的作業系統不能用呢 ? 如果你遇到這些問題,Docker 都可以幫助你解決這些問題 Docker 架構 在 Docker 這
資訊保安對於企業的資訊科技部門是越來越重要,有很多企業己經開始將資訊保安從日常的資訊科技拆分,以避免資訊科技部門因日常繁重的技術支援無法同時兼顧資訊保安的應對。 而資訊保安和IT審計是密不可分的。如果說資訊保安是日常的防御工事,那IT審計就是比起防御更能預先部署的可預視的一環。 過往IT審計可能
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
IaaS是一種雲端服務模型,所使用的運算資源託管在公有雲 、私有雲或混合雲中,能將傳統IT硬體設備統整為虛擬的運算資源,而得以針對運算需求彈性地調配資源。
Thumbnail
本文介紹了 Docker 的基礎概念,以及在軟體工程環境中的運用。藉由 Docker 的容器化技術和映像檔技術,能夠實現開發和生產環境的一致性,並且支持負載平衡和無縫更新。此外,也提到了 Kubernetes 和 Docker Swarm 這兩個重要工具的用途和適用對象。
Thumbnail
前年第一次藉公司機會,參加了DevOpsDay的活動。雖然devOps一詞各自表述,大多狀況還是偏向維運會遇到的技術為主,做為平時開發、跟使用者訪談需求的工作內容來說,參加聚會如果沒有一定的知識,對講者所提到的狀況比較難有共鳴...
Thumbnail
今天來聊個最近很夯的主題 DDD,但不是 DDD 的本尊 Domain Driven Design,而是無所不在的 Database Driven Design,Database Driven Design 不是不好,只是你的模型容易變成貧血模型,邏輯都集中在 service 層等等。
Thumbnail
本文將探討Kubernetes內部DNS解析的相關流程,並介紹如何利用DNS來找到服務。透過瞭解DNS的工作原理,可以讓應用服務的問題處理更有效率,並提供基本測試與結論。
1.5 Date Techonlogy DT時代的特徵是體驗,體驗就是感受。顧客要的不是服務,顧客要的是體驗。 2.4 在大數據時代,企業必須運用DT技術從資料收集至中探索巨大的價值,因為它能夠讓企業比顧客更懂顧客。DT技術運用方式 一、自動預測趨勢和行為 二、關聯性分析 三、分群
Thumbnail
※ 效能 What tools would you use to monitor or analyze your performance ? 中文意思:在監控或分析系統性能方面可能會使用哪些工具? ※ 解答: 常見的監控和分析工具,可分成以下6大類: 系統監控工具: 例如,Promethe
Thumbnail
大數據時代下,Log的多元應用至關重要。Log生成龐大,格式各異,特別金融業需合規。探討Log廣泛應用、資訊安全、IT管理和商業決策。建立Log管理系統核心深入法規,強化IT治理、權限控管。一站式Log管理平台,確保資訊安全合規。
Thumbnail
前言 上次我們針對 Docker 這樣容器化技術做了一點介紹,今天我們要來講解 Docker 架構,你是否發現在每次程式上伺服器的流程很麻煩呢 ? 是否發現你寫的程式在別的作業系統不能用呢 ? 如果你遇到這些問題,Docker 都可以幫助你解決這些問題 Docker 架構 在 Docker 這
資訊保安對於企業的資訊科技部門是越來越重要,有很多企業己經開始將資訊保安從日常的資訊科技拆分,以避免資訊科技部門因日常繁重的技術支援無法同時兼顧資訊保安的應對。 而資訊保安和IT審計是密不可分的。如果說資訊保安是日常的防御工事,那IT審計就是比起防御更能預先部署的可預視的一環。 過往IT審計可能