更新於 2024/12/20閱讀時間約 12 分鐘

圖論應用經典 課程表 Course Schedule_Leetcode #207

題目敘述

題目會給我們一個輸入陣列prerequisites,每個pair代表兩個課程之間的先修關係,和課程總數numCourses。

題目問我們這組課程表是否能依照順序修完所有的課程?

如果可以,返回True。

如果不行,代表有擋修形成死結,無法依照順序修完所有的課程,返回False。


詳細的題目可在這裡看到


測試範例

Example 1:

Input: numCourses = 2, prerequisites = [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: numCourses = 2, prerequisites = [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

0, 1兩個課程彼此擋修,形成互卡的死結,因此無法依照順序修完所有的課程。​

約束條件

  • 1 <= numCourses <= 2000
  • 0 <= prerequisites.length <= 5000
  • prerequisites[i].length == 2
  • 0 <= ai, bi < numCourses
  • All the pairs prerequisites[i] are unique.

演算法 DFS

本文章將介紹兩種方法。

  1. 可以用DFS的cycle detection環路偵測演算法來偵測是否有擋修互卡的死結。
  2. 可以用BFS的Topological sort拓樸排序,來檢查是存在擋修互卡的死結。


  1. 可以用DFS的cycle detection環路偵測演算法
    每個節點對應到課程,每個先修關係對應到一條邊。
    造一個loop,從編號小的節點開始進行DFS深度優先拜訪。
    假如遇到當下這個節點是Checking狀態,代表存在死結,無法依照順序修完所有的課程。
    假如當下這個節點尚未檢查過,把自己標記成Checking,接著遞迴呼叫DFS拜訪所有鄰居節點。
    最後,假如都順利完成,把當下這個節點(也就是這門課程)標記為Completed。


image

image


image

image


程式碼 DFS的cycle detection環路偵測演算法

class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:

# Constant defined for course state
NOT_CHECKED, CHECKING, COMPLETED = 0, 1, 2

# -------------------------------

def has_deadlock( course )->bool:

if course_state[course] != NOT_CHECKED:
# There is a cycle(i.e., deadlock ) in prerequisites
return course_state[course] == CHECKING

# update current course as checking
course_state[course] = CHECKING

# check pre_course in DFS and detect whether there is deadlock
for pre_course in requirement[course]:

if has_deadlock( pre_course ):
# deadlock is found, impossible to finish all courses
return True


# update current course as completed
course_state[course] = COMPLETED

return False

# -------------------------------

# each course maintain a list of its own prerequisites
requirement = collections.defaultdict( list )

for course, pre_course in prerequisites:
requirement[course].append( pre_course )


# each course maintain a state among {NOT_CHECKED, CHECKING, COMPLETED}
# Initial state is NOT_CHECKED
course_state = [ NOT_CHECKED for _ in range(numCourses) ]

# Launch cycle (i.e., deadlock ) detection in DFS
for course_idx in range(0, numCourses):

if has_deadlock(course_idx):
# deadlock is found, impossible to finish all courses
return False

# we can finish all course with required order
return True

演算法 BFS

另一種就是Topological sort拓樸排序。

建造一個Queue,從沒有擋修的課程(in_degree = 0的節點)開始進行廣度優先搜索,移除這一輪沒有擋修的課程和對應的out-going edge,移除的同時,把下一輪沒有擋修的課程加入Queue中,反覆進行迭代。

最後,如果所有課程都移除完畢,而且沒有剩餘的課程,代表可以依照順序修完所有課程。否則,代表存在有擋修互卡的死結。


程式碼 BFS的Topological sort拓樸排序

class Solution:
 def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
  
  # each course maintain a list of its own dependency
  relation = defaultdict( list )

  # in degree of each course
  # in degree stands for the number of preliminary courses
  in_degree = defaultdict( int )
  
  for course, pre_course in prerequisites:
   # update relation
   relation[pre_course].append( course )

   # update in_degree
   in_degree[course] += 1


  # Topological sort on in_degree
  bfs_q = deque()
  for course_idx in range(0, numCourses):
   if in_degree[course_idx] == 0:
    bfs_q.append(course_idx)

  finish_count = 0
  while bfs_q:

   # Finish current course
   cur_course = bfs_q.popleft()
   finish_count += 1

   # Unlock some courses related to current course
   for course in relation[cur_course]:
    in_degree[course] -= 1

    if in_degree[course] == 0:
     # this course can be taken next round if it doesn't have preliminary course anymore
     bfs_q.append( course )
  
  return finish_count == numCourses ​

複雜度分析

時間複雜度:

O( V+E )

兩種方法皆為O(V+E),點至多拜訪一次,邊也是至多拜訪一次。

空間複雜度:

O( V+E )

兩種方法皆為O(V+E),包含對應的DFS遞迴深度 + table大小,或者BFS Queue長度 + table大小


關鍵知識點

  1. 把課程先修關係抽象化,轉為圖論中的節點(課程)和邊(先修關係),把課程擋修的問題轉化為是否存在Cycle環路的問題


  1. 圖論中的題目,假如沒有特殊限制或者還沒有具體的解題想法,先聯想到DFS和BFS,這兩個可以說是圖論中最泛用的演算法模板

Reference:

[1] Python by DFS//BFS and cycle detection [w/ Graph ] - Course Schedule - LeetCode


分享至
成為作者繼續創作的動力吧!
© 2025 vocus All rights reserved.