以流為基礎的深度生成模型

更新於 發佈於 閱讀時間約 3 分鐘

以流為基礎的深度生成模型藉助正規化流這一強大的統計工具來解決密度估計這個困難問題。對 p(x) 的良好估計使得有效完成許多下游任務成為可能:取樣未觀察到但真實的新數據點(數據生成)、預測未來事件的稀有程度(密度估計)、推斷潛在變量、填補不完整的數據樣本等。


生成模型的類型


以下是生成對抗網路(GAN)、變分自編碼器(VAE)和以流為基礎的生成模型之間差異的簡單介紹:

生成對抗網路:GAN提供了一個巧妙的解決方法,將資料生成這個非監督式學習問題轉化為監督式學習問題。判別器模型學習區分真實資料和生成器模型產生的假樣本資料。兩個模型在訓練過程中如同進行極小極大博弈過程。


變分自編碼器:VAE通過最大化證據下界(ELBO)來間接最佳化數據的對數相似性。


基於流的生成模型:基於流的生成模型由一系列可逆變換建構。與其他兩種模型不同,該模型明確地學習數據分佈 p(x),因此損失函數就是簡單的負對數相似性。


什麼是正規化流?

密度估計是一種幫助解決機器學習問題的重要方法,但要進行一個精準的密度估計非常困難。例如,由於我們需要在深度學習模型中運行反向傳播,嵌入的機率分佈(即後驗 p(z∣x))必須要簡單到能夠容易且快速地計算導數。正規化流(NF)方法在此時採用更好的分佈近似而被廣泛應用。正規化流通過使用一系列可逆變換函數,將簡單的分佈轉換為複雜的分佈。通過一連串的變換,我們根據變量變換定理反覆替換變量,最終得到目標變量的機率分佈。


Reference


1. Normalizing Flows by Adam Kosiorek.

  1. Danilo Jimenez Rezende, and Shakir Mohamed. “Variational inference with normalizing flows.” ICML 2015.
  2. Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using Real NVP.” ICLR 2017.
avatar-img
0會員
33內容數
心繫正體中文的科學家,立志使用正體中文撰寫文章。 此沙龍預計涵蓋各項資訊科技知識分享與學習心得
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Kiki的沙龍 的其他內容
擴散模型受非均衡熱力學啟發。非均衡熱力學定義了一個擴散步驟的馬可夫鏈,逐步向資料添加隨機資訊,然後學習如何逆轉擴散過程,從隨機資訊中建構所需的樣本資料。與變分自編碼器(VAE)或以流為基礎的模型不同,擴散模型是通過固定程序學習的,且其潛在變量具有高維度(與原始資料相同)。
深度學習是什麼? 簡單來說,深度學習是大型且多層的人工神經網路。我們可以想像神經網路("Neural Nnetwork, NN")是一種有向無環圖,此圖可拆分成三個部分來看: 1. 輸入層接收信號向量;2. 一個或多個隱藏層處理前一層的輸出; 3. 輸出層統合之前所有隱藏層的處理結果。神經網路的初
3GPP官方網站和工具 這些是獲取3GPP(第三代合作夥伴計劃)最新資訊的主要來源。對於研究人員和業界專業人士來說,3GPP官方資訊可供理解、實作和測試3GPP標準。另一方面,對於進行移動通訊研究的學者和學生來說,這些資源是深入了解最新技術標準和發展趨勢的重要途徑。
擴散模型受非均衡熱力學啟發。非均衡熱力學定義了一個擴散步驟的馬可夫鏈,逐步向資料添加隨機資訊,然後學習如何逆轉擴散過程,從隨機資訊中建構所需的樣本資料。與變分自編碼器(VAE)或以流為基礎的模型不同,擴散模型是通過固定程序學習的,且其潛在變量具有高維度(與原始資料相同)。
深度學習是什麼? 簡單來說,深度學習是大型且多層的人工神經網路。我們可以想像神經網路("Neural Nnetwork, NN")是一種有向無環圖,此圖可拆分成三個部分來看: 1. 輸入層接收信號向量;2. 一個或多個隱藏層處理前一層的輸出; 3. 輸出層統合之前所有隱藏層的處理結果。神經網路的初
3GPP官方網站和工具 這些是獲取3GPP(第三代合作夥伴計劃)最新資訊的主要來源。對於研究人員和業界專業人士來說,3GPP官方資訊可供理解、實作和測試3GPP標準。另一方面,對於進行移動通訊研究的學者和學生來說,這些資源是深入了解最新技術標準和發展趨勢的重要途徑。
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在某些情況下,別人提供的 Pretrained Transformer Model 效果不盡人意,可能會想要自己做 Pretrained Model,但是這會耗費大量運
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 114 建立了 Transformer 模型,並在 AI說書 - 從0開始 - 115 載入權重並執行 Tokenizing,現
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 下游任務是一個 Fine-Tuned 的 Transformer 任務,它從預先訓練的 Transformer 模型繼承模型和參數,故,下游任務是運行微調任務的預訓練模
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 新模型和 Human Baselines 排名將不斷變化,Human Baselines 的位置自從基礎模型出現以來,它就不再具有多大意義了,這些排名只是表明經典 NL
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 繼 AI說書 - 從0開始 - 82 與 xxx ,我們談論了衡量 AI 模型的方式,那當你訓練的模型比 State-of-the-Art 還要好並想要進行宣稱時,需要
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 19中,闡述了Inference的Pipeline為t = f(n),現在我們做一些擴充與特點說明: t = f(n)其實展
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 18中,介紹了OpenAI的GPT模型如何利用Inference的Pipeline產生Token。 完整Pipeline可能
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在某些情況下,別人提供的 Pretrained Transformer Model 效果不盡人意,可能會想要自己做 Pretrained Model,但是這會耗費大量運
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在 AI說書 - 從0開始 - 114 建立了 Transformer 模型,並在 AI說書 - 從0開始 - 115 載入權重並執行 Tokenizing,現
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 總結一下目前有的素材: AI說書 - 從0開始 - 103:資料集載入 AI說書 - 從0開始 - 104:定義資料清洗的函數 AI說書 - 從0開始 - 105
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 下游任務是一個 Fine-Tuned 的 Transformer 任務,它從預先訓練的 Transformer 模型繼承模型和參數,故,下游任務是運行微調任務的預訓練模
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 以下陳述任務 (Task)、模型 (Model)、微調 (Fine-Tuning)、GLUE (General Language Understanding Evalu
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 新模型和 Human Baselines 排名將不斷變化,Human Baselines 的位置自從基礎模型出現以來,它就不再具有多大意義了,這些排名只是表明經典 NL
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 繼 AI說書 - 從0開始 - 82 與 xxx ,我們談論了衡量 AI 模型的方式,那當你訓練的模型比 State-of-the-Art 還要好並想要進行宣稱時,需要
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 19中,闡述了Inference的Pipeline為t = f(n),現在我們做一些擴充與特點說明: t = f(n)其實展
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 我們已經在AI說書 - 從0開始 - 18中,介紹了OpenAI的GPT模型如何利用Inference的Pipeline產生Token。 完整Pipeline可能