「人工智慧」的AlphaGo「圍棋革命」─圍棋的本質(1)

更新於 發佈於 閱讀時間約 5 分鐘
作者:陳華夫
利用人工智慧,美國「谷歌」所屬的DeepMind公司從2016年發展出史上無敵的AlphaGo Zero圍棋軟體,不僅遠遠超過人類,緊追在後的國的絕藝、日本的「ZenGo7」、開源的Katrain等電腦圍棋的棋力也遠超過人類。。
回顧歷史,2016/3月,DeepMind公司開發的AlphaGo Lee以4:1戰勝世界冠軍韓國職業棋士李世石九段。2016/12/29日升級版的AlphaGo Master弈城圍棋網及騰訊野狐圍棋網,以60:0戰勝中、韓、日、台的圍棋世界冠軍。(按:我在2017年仔細分析了這60局,而寫了《現代流圍棋:如何簡單對戰ALPHAGO-II (第一集)》,並將此書製作60集youtube視頻:現代圍棋學習之路─AlphaGo Master人機大戰共64集─(全集播放)
在2017/10/19日DeepMind公司在《自然》雜誌上發表了劃時代的論文:「Mastering the game of go without human knowledge,David Silver, .et.al, Nature, 550, 354-359, 2017」(中文翻譯:不需要人類圍棋經驗練的超級電腦圍棋軟體),而推出了迄今圍棋史上棋力最強的版本:AlphaGo Zero,它擺脫了它的前身─AlphaGo LeeAlphaGo Master ─必須借助使用人類KGS圍棋伺服器棋譜進行監督學習,完全由零(Zero)開始,不需要人為指導,只是自己和自己不斷對弈,來訓練自己。AlphaGo Zero經過3天的學習就以100:0的比數擊敗AlphaGo Lee的實力,而在21天後達到了AlphaGo Master的水平,並在40天內超過了所有之前的版本,成為史上無敵的圍棋軟體。
(圖片來源:Mastering the game of go without human knowledge,David Silver, .et.al, Nature, 550, 354-359, 2017)
AlphaGo Zero與緊追在其後的絕藝、, 「ZenGo 7」, 金毛,天壤,韓豆, Katrain等電腦圍棋的棋力比較如下圖:(見最新圍棋AI實力排行!
(圖片來源:陳華夫製作)
雖然AlphaGo Zero的棋力史上無敵,但它畢竟是基於人工智慧所開發出來的圍棋軟體,與人類智慧比較,人工智慧有不少缺陷。(見拙文AI「深度學習」的缺陷及我親身的補正?─科技智慧(5))簡要的說,人工智慧所開發出來的圍棋軟體雖然能贏棋,卻無法模塊化圍棋知識及提煉圍棋對弈致勝的規則(規律),以教導人類如何學習圍棋。
人工智慧學習另一個致命傷是無法舉一反三的學習轉移(Transfer of learning)─即把學習到的知識及技能舉一反三的應用到新的情況或不同的領域。例如,DeepMind公司再發展AlphaGo LeeAlphaGo Master,及AlphaGo Zero等3個版本時,各個版本都是獨立構造,和獨立進行訓練的,也就是說,各版本的圍棋知識無法舉一反三的學習轉移到其它的版本上。相反的,人類的智慧可以分解組合知識是的,及舉一反三的學習轉移到新領域。
然而,自學的AlphaGo Zero仍是基於深度學習,其演算法是「由下而上」的規則性(rule-based),而人類的圍棋智慧卻是「由上而下」的理論性(theory based),也就是說,人類智慧是一種理論洞識,而理論推理是高過規則一個檔次(見人類才不會被AI取代!《大腦如何精準學習》揭大腦6大優點:目前的人工智慧永遠學不來)。所以人類智慧高人工智慧一個檔次。而我就成功的抽取出圍棋的理論現代流圍棋五原則,並以它奮戰「ZenGo 九段」與「Katrain 9段」。在經過4、5年,我現在已能有系統的持白大勝「ZenGo 九段」與「Katrain 9段」,證明了人類智慧還是有機會戰勝人工智慧的電腦圍棋軟體。(請看拙文如何正確的戰勝AI電腦圍棋「Katrain 9段」?─圍棋本質(9)、及youtube視頻現代流5原則對戰職業九段,9P系列(60─100)─ 陳華夫持白狂勝「Katrain 9段」144目半
為什麼會看到廣告
avatar-img
476會員
249內容數
思想家─理解、解釋、預測世界。發表:9篇「深度政經分析」、6篇「現代開悟之洞識」、10篇「學習的本質」、13篇「美中關係」、4篇「驀然回首」、21篇「文學與藝術」、36篇「科技與智慧」、9篇「圍棋的本質」、40篇「美中經濟」、28篇「美股的本質」、12篇「美聯儲的本質」、12篇「貨幣及美元的本質」,共201篇。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
作者:陳華夫 我為了推行正確的科學方法學圍棋,以擺脫「佈局」、「定式」及「打譜」的傳統的圍棋教學,而覺悟到必須改革頂尖的圍棋世界冠軍賽的規則,俾能允許棋手全局總共「回手」三次。為此,我連續發表了三篇文章:1)AI人工智慧「深度學習」的缺陷、補救、及我親身的見證?、2)為何不應再辦不能「回手」的純人類
現代流圍棋五原則能擊敗(干擾)「ZenGo 九段」與「Katrain 9段」電腦圍棋,其意義類似當今時髦的愚弄人工智慧的「干擾遊戲」。也同時證明了,人類的圍棋智慧卻是「由上而下」(Top-Down)的「知識策略」,最終可能戰勝有史以來最強的AI人工智慧電腦圍棋─ AlphaGo Zero。
作者:陳華夫 我為了推行正確的科學方法學圍棋,以擺脫「佈局」、「定式」及「打譜」的傳統的圍棋教學,而覺悟到必須改革頂尖的圍棋世界冠軍賽的規則,俾能允許棋手全局總共「回手」三次。為此,我連續發表了三篇文章:1)AI人工智慧「深度學習」的缺陷、補救、及我親身的見證?、2)為何不應再辦不能「回手」的純人類
現代流圍棋五原則能擊敗(干擾)「ZenGo 九段」與「Katrain 9段」電腦圍棋,其意義類似當今時髦的愚弄人工智慧的「干擾遊戲」。也同時證明了,人類的圍棋智慧卻是「由上而下」(Top-Down)的「知識策略」,最終可能戰勝有史以來最強的AI人工智慧電腦圍棋─ AlphaGo Zero。
你可能也想看
Google News 追蹤
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
近年來,人工智慧(AI)領域有許多讓人興奮的新研究。AlphaGo擊敗了圍棋界最頂尖的職業選手。不久之後,其衍生演算法AlphaGo Zero在沒有人類知識監督學習的情況下以100-0的比分擊敗了AlphaGo。在DOTA2的1v1比賽中,頂級職業玩家輸給了OpenAI開發的機器人。
Thumbnail
自從人工智慧圍棋軟體Alpha Go在2016年打敗世界圍棋冠軍李世乭之後,就再也沒有任何人工智慧與人類競賽的新聞,因為人類已全面認輸了。 二0二一年,人工智慧的技術又有突破性的發展,依google科技與社會資深副總裁曼宜伽的觀察,現今的技術已經達到多模態架構,也就是當我們用語言表達概念,AI已經
Thumbnail
想用古老技藝去思考未來科技? 想用人工智能去探求智慧結晶? 有何物品可以探索過去跟尋找未來!!! 你沒猜錯!答案正是「圍棋」! 圍棋是人類史上最困難的腦力遊戲! 但在2016年Alphago問世後! 圍棋開始變成研究AI跟了解AI的技藝!
Thumbnail
AlphaGo 的開發,讓人工智慧在圍棋的研究讓更多人被看到,也看到它成熟的結果。現代的圍棋教學和棋手訓練,也或多或少會借鏡各類的AI系統做學習。然而,教學的歷程,過度追求AI的棋步和棋法,有時會讓小朋友難以理解。一步登天的方式,有時反而會讓同學走得更坎坷。
  但我還是想從AlphaGo談起。我想回到那個在當前時刻已經一點都不令人感到驚訝的,AlphaGo四比一擊敗李世乭的那個時間,去看人類圍棋發生了什麼事、去看AlphaGo在那當下做了什麼、以及李世乭在那裡經歷了什麼。這會是AI未來發展的縮影,也是人類未來發展的縮影。
前言 最近開始讀《強化式學習:打造最強 AlphaZero 通用演算法》這本書,AlphaZero是AlphaGo的改良升級版,而AlphaGo打敗了世界頂尖圍棋棋士,這本書是在介紹AlphaZero使用的技術和演算法。這篇文章是筆記我在閱讀此書介紹"強化式學習"的篇幅時,遇到不懂的名詞解釋,上網
現今進入了高手人手一機的 「AI時代」一 每步棋都有最佳解+勝率參考 卻仍然要強調基本功 為什麼呢?
Thumbnail
世界西洋棋冠軍 Garry Kasparov分享了他在 1997 年與 IBM Deep Blue 比賽下棋卻輸給機器的故事。然而,他呼籲人們不要害怕被人工智能超越,而是要與機器合作,因為科技的進步將帶來更多力量。影片中提到了與人工智能共存的可能性,以及機器與人類各自的優勢。值得一看的影片!
Thumbnail
韓國圍棋九段李世乭與AlphaGo的對弈已經三連敗,可以大膽預期,接下來的兩戰也差不多,甚至AlphaGo將全世界各地的棋王都打敗,我也不覺得奇怪。3個月前,能在圍棋盤上戰勝AlphaGo的人類可能已經不到千人了。未來無人能敵也只是時間的問題,AlphaGo已然成為全世界最會下棋的「超級電腦
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
近年來,人工智慧(AI)領域有許多讓人興奮的新研究。AlphaGo擊敗了圍棋界最頂尖的職業選手。不久之後,其衍生演算法AlphaGo Zero在沒有人類知識監督學習的情況下以100-0的比分擊敗了AlphaGo。在DOTA2的1v1比賽中,頂級職業玩家輸給了OpenAI開發的機器人。
Thumbnail
自從人工智慧圍棋軟體Alpha Go在2016年打敗世界圍棋冠軍李世乭之後,就再也沒有任何人工智慧與人類競賽的新聞,因為人類已全面認輸了。 二0二一年,人工智慧的技術又有突破性的發展,依google科技與社會資深副總裁曼宜伽的觀察,現今的技術已經達到多模態架構,也就是當我們用語言表達概念,AI已經
Thumbnail
想用古老技藝去思考未來科技? 想用人工智能去探求智慧結晶? 有何物品可以探索過去跟尋找未來!!! 你沒猜錯!答案正是「圍棋」! 圍棋是人類史上最困難的腦力遊戲! 但在2016年Alphago問世後! 圍棋開始變成研究AI跟了解AI的技藝!
Thumbnail
AlphaGo 的開發,讓人工智慧在圍棋的研究讓更多人被看到,也看到它成熟的結果。現代的圍棋教學和棋手訓練,也或多或少會借鏡各類的AI系統做學習。然而,教學的歷程,過度追求AI的棋步和棋法,有時會讓小朋友難以理解。一步登天的方式,有時反而會讓同學走得更坎坷。
  但我還是想從AlphaGo談起。我想回到那個在當前時刻已經一點都不令人感到驚訝的,AlphaGo四比一擊敗李世乭的那個時間,去看人類圍棋發生了什麼事、去看AlphaGo在那當下做了什麼、以及李世乭在那裡經歷了什麼。這會是AI未來發展的縮影,也是人類未來發展的縮影。
前言 最近開始讀《強化式學習:打造最強 AlphaZero 通用演算法》這本書,AlphaZero是AlphaGo的改良升級版,而AlphaGo打敗了世界頂尖圍棋棋士,這本書是在介紹AlphaZero使用的技術和演算法。這篇文章是筆記我在閱讀此書介紹"強化式學習"的篇幅時,遇到不懂的名詞解釋,上網
現今進入了高手人手一機的 「AI時代」一 每步棋都有最佳解+勝率參考 卻仍然要強調基本功 為什麼呢?
Thumbnail
世界西洋棋冠軍 Garry Kasparov分享了他在 1997 年與 IBM Deep Blue 比賽下棋卻輸給機器的故事。然而,他呼籲人們不要害怕被人工智能超越,而是要與機器合作,因為科技的進步將帶來更多力量。影片中提到了與人工智能共存的可能性,以及機器與人類各自的優勢。值得一看的影片!
Thumbnail
韓國圍棋九段李世乭與AlphaGo的對弈已經三連敗,可以大膽預期,接下來的兩戰也差不多,甚至AlphaGo將全世界各地的棋王都打敗,我也不覺得奇怪。3個月前,能在圍棋盤上戰勝AlphaGo的人類可能已經不到千人了。未來無人能敵也只是時間的問題,AlphaGo已然成為全世界最會下棋的「超級電腦