開啟一切可能性的鑰匙,8K Text Embedding Model

更新於 發佈於 閱讀時間約 20 分鐘

前言:

要檢查兩段長篇文字,內容是否雷同,長久以來困擾著大家,沒有好的嵌入模型,會耗費大量人力,需要對長篇文檔進行人工閱讀然後人工分類。本文除了展示如何能完美的解決這個痛點以外,也提供一些延伸應用思路,學習CP值很高。期待你能從本文取得許多新的應用思路與應用潛力!

技術說明:

嵌入模型能藉由計算抽取出一段文字的特徵值向量 [a1,a2,...an],每一個a1~an都相當於是投影在抽取出來的特徵向量上的投影長度,藉由比較兩段文字各自的嵌入特徵值向量,能夠快速得知其內容是否雷同。

本篇介紹的Text Embedding Model基於 Bert 架構,支援 Attention with Linear Biases (ALiBi) 的 symmetric bidirectional variant,允許用較短的序列長度訓練,用更長的序列長度來測試。

使用 512 序列長度進行訓練,可以推斷到 8196序列長度(甚至更長),當需要處理長文檔時,這個模型特別好用。

用途包括長文檔檢索、語義文本相似性、文本重新排名、推薦、RAG 和 LLM 的生成搜索,等等,可以拿來做各種應用!

該模型的Backbone是在 C4 數據集上預先訓練的,然後進一步在 Jina AI 的超過 4 億對正負樣本上進行訓練。這些句子對來自各種領域,通過徹底的清理與精心選擇。模型具有 1.37 億參數的標準大小,可以實現快速推斷,建議使用單個 GPU 進行推斷。

簡單用例嘗試:

測試語意非常相近的例子

預計要得到很高的Cosine Similarity分數

(為了簡化展示篇幅,這邊測試的皆是英文單句,其實可以輸入兩篇長篇文章做比對)

How is the weather today? vs. What is the current weather like today?

這兩句問的都是今天的天氣,得到Cosine相似度分數0.934的高分 (分數介於0~1之間)

順便得到Embedding向量的長度為768

from transformers import AutoModel
from numpy.linalg import norm
import numpy as np

cos_sim = lambda a, b: (a @ b.T) / (norm(a) * norm(b))
model = AutoModel.from_pretrained(
"jinaai/jina-embeddings-v2-base-en", trust_remote_code=True
) # trust_remote_code is needed to use the encode method
embeddings = model.encode(["How is the weather today?",
"What is the current weather like today?"])

print(np.shape(embeddings[0]))
print(cos_sim(embeddings[0], embeddings[1]))

output:

(768,)
0.9341313

測試語意不相干的例子

預計要得到很低的Cosine Similarity分數

(為了簡化展示篇幅,這邊測試的皆是英文單句,其實可以輸入兩篇長篇文章做比對)

I drew a dog. vs. The storm is coming.

這兩句話,表達完全不相干的語意,經過計算得到的分數較低,0.7以下顯示這兩句話相關性非常低。

embeddings = model.encode(["I drew a dog.", 
"The storm is coming."])
print(cos_sim(embeddings[0], embeddings[1]))

output:

0.6212821

打造推薦系統:

範例中的Keras Embedding layer輸入必須是int數字,如果輸入是電影名稱與分類的文字描述細節,則可以用model.encode來做嵌入編碼,把關於電影的描述轉成768維度的特徵值向量,然後和原本的Used_Id Embedding做內積,充分活用以下範例,可以打造商品推薦系統。至於資料集方面,要想辦法蒐集使用者的偏好度,可以藉由發問卷來達成。

model = AutoModel.from_pretrained(
"jinaai/jina-embeddings-v2-base-en", trust_remote_code=True
) # trust_remote_code is needed to use the encode method
embeddings = model.encode(movie_input)
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from tensorflow import keras
from keras.layers import Input, Embedding, Flatten, Dot, Dense
from keras.models import Model
from zipfile import ZipFile
from pathlib import Path

# Download the actual data from http://files.grouplens.org/datasets/movielens/ml-latest-small.zip"
# 使用 ratings.csv 檔案
movielens_data_file_url = (
"http://files.grouplens.org/datasets/movielens/ml-latest-small.zip"
)
movielens_zipped_file = keras.utils.get_file(
"ml-latest-small.zip", movielens_data_file_url, extract=False
)
keras_datasets_path = Path(movielens_zipped_file).parents[0]
movielens_dir = keras_datasets_path / "ml-latest-small"

# 只有在沒有DATA的時候才會進行下載
if not movielens_dir.exists():
with ZipFile(movielens_zipped_file, "r") as zip:
# 解壓縮
print("Extracting all the files now...")
zip.extractall(path=keras_datasets_path)
print("Done!")

ratings_file = movielens_dir / "ratings.csv"

# 取得電影評分數據
data = pd.read_csv(ratings_file)
print("Columns of data: ", data.columns)

# 創建用户和電影的索引
user_ids = data["userId"].unique()
movie_ids = data["movieId"].unique()

user_id_map = {user_id: i for i, user_id in enumerate(user_ids)}
movie_id_map = {movie_id: i for i, movie_id in enumerate(movie_ids)}

data["user"] = data["userId"].map(user_id_map)
data["movie"] = data["movieId"].map(movie_id_map)

# 劃分訓練還有測試集
train, test = train_test_split(data, test_size=0.2, random_state=42)

# 創建模型
EMBEDDING_SIZE = 768
user_input = Input(shape=(1,))
user_embedding = Embedding(len(user_ids), EMBEDDING_SIZE)(user_input)
user_embedding = Flatten()(user_embedding)

movie_input = Input(shape=(1,))
movie_embedding = Embedding(len(movie_ids), EMBEDDING_SIZE)(movie_input)
movie_embedding = Flatten()(movie_embedding)

dot_product = Dot(axes=1)([user_embedding, movie_embedding])
model = Model(inputs=[user_input, movie_input], outputs=dot_product)

model.compile(optimizer="adam", loss="mean_squared_error")

# 訓練模型
model.fit(
[train["user"], train["movie"]],
train["rating"],
epochs=5,
batch_size=64,
validation_data=([test["user"], test["movie"]], test["rating"]),
)

# 進行電影推薦
user_id = 1 # 推薦給誰,用用戶ID來區別

movies_watched = data[data["user"] == user_id]["movie"].unique()
unwatched_movies = data[~data["movie"].isin(movies_watched)]["movie"].unique()

user_ids = [user_id] * len(unwatched_movies)

user_ids_tensor = np.array(user_ids)
unwatched_movies_tensor = np.array(unwatched_movies)

predictions = model([user_ids_tensor, unwatched_movies_tensor])

movie_recommendations = pd.DataFrame(
{"movieId": unwatched_movies, "predicted_rating": np.ravel(predictions)}
)
movie_recommendations = movie_recommendations.sort_values(
by="predicted_rating", ascending=False
)
top_10_recommendations = movie_recommendations.head(10)

print(top_10_recommendations)

利用強化學習:

使機器聽得懂人話,聽到特定概念,轉成嵌入向量以後,當成輸入,經過強化學習,就會開始執行相對應的動作。例如對阿斯拉說,打開推進器,或是讓我們一起進入零的領域,阿斯拉就會根據環境數據,智慧的幫忙準備執行指令的配套,讓主角風見隼人可以放心地推動推進器。

state: 環境數據 / 風見隼人的聲音指令輸入,聲音轉文字,文字轉Embedding (打開推進器)
action: 執行打開推進器​,與其它和環境配套的措施
reward: 瞬時速度高,而且沒有撞到護欄,高速過彎
​state: 環境數據 / 風見隼人的聲音指令輸入,聲音轉文字,文字轉Embedding (風扇騰空過彎)
action: 執行風扇騰空過彎,與其它和環境配套的措施
reward: 瞬時速度高,而且沒有撞到護欄,高速過彎

能夠使用這項技術的論文(不限於這些):

反思的過程有一個反思標籤是檢查相關性,可以用上這裡的嵌入模型
Dall-E3裡面可以對文字升取樣前後計算Cosine distance,收斂表示已經加入足夠多對圖片的描述
同上,蒸餾監督微調步驟可以使用嵌入模型來判別是否可以停止蒸餾迴圈

其他嵌入模型:

V2 (Based on JinaBert, 8K Seq)

引用:

@article{DBLP:journals/corr/abs-2108-12409,
author = {Ofir Press and
Noah A. Smith and
Mike Lewis},
title = {Train Short, Test Long: Attention with Linear Biases Enables Input
Length Extrapolation},
journal = {CoRR},
volume = {abs/2108.12409},
year = {2021},
url = {https://arxiv.org/abs/2108.12409},
eprinttype = {arXiv},
eprint = {2108.12409},
timestamp = {Thu, 02 Sep 2021 14:42:29 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2108-12409.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}


如果你對 AI 充滿熱情,學習上又不想浪費時間,我能夠以過來人的經驗給你不少想法,歡迎在Facebook群裡面留言。

如果想要用Zoom直接交談,為你直接解惑的,也可以點以下連結預約時間 (1小時)

 https://calendly.com/universe_ai/free_appointment

avatar-img
95會員
128內容數
帶你用上帝視角,針對市面上具有高度價值的影片/論文/書籍,用東方取象,與西方邏輯辯證的角度同時出發,跟著我一起來探討宇宙萬事萬物的本質,隨時隨地都可以來一場說走就走的思維旅行。作者在台積電 / 聯發科等科技產業有累計10年的資歷,近期對於人工智慧,東方易經,西方辯證邏輯,還有佛法向內求有深度興趣。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
為了使小模型取得大模型的回答水平 這篇論文提出了三招,"大幅度"提升Mistral 7B模型的回答準確率 如果有想要把LLM微調好的人,一定不能錯過這篇
為了提高文字生成影像的品質,openAI 團隊用了三招: 第一招,利用模型將文字"升取樣",產生出許多描述細節 第二招,用CLIP ViT產生Embeddings,計算Cosine similarities 第三招: 使用GPT4,對生成結果進行評比。
作者提出一新框架SELF-RAG,強調了大型語言模型(LMMs)的質量和事實性改進,依據需求自動檢索段落,以反思標記生成和評估內容。SELF-RAG讓LMMs自主決定檢索時機和內容,並使其能評估自身生成。實驗表明SELF-RAG改寫LMMs規則,為自主學習和多任務適應的未來鋪平道路。
為了避免GPT模型對人類社會造成危害,要有一個指標來評量個語言模型的資訊透明度。當有關於模型的公開訊息越多,無論是訓練資料的取得來源與資料搜集方法,還是模型細節的接露,與產生結果的限制用途與目標客群等等,都是這篇論文關心且要衡量的指標,藉由評分防止發行人工智慧的大科技公司可能造成的社會危害
訓練一個專屬於自己的守護神有其重要性,可以幫你個性化的解決問題,例如,如果上班常常解讀每個公司的資產負債表,則你可以利用文中的Fuyu-8b model專門的去學習如何看資產負債表,把你手邊有的案例都讓他學習一遍,這樣未來可以解放雙手,輕鬆上班完成任務。
每天有這麼多的金融數據在變化著,做為一個非全職投資人,要如何同時間掌握這麼多經濟數據與新聞報導,替投資理財做下相對正確的判斷,這時候你會需要自己的投資守護神語言模型,藉由新聞與訊息的整理爬蟲,導入自行訓練的守護神語言模型,讓他每天定時產生社論與投資建議,藉由Email 送出來給您參考,省去你不少時間
為了使小模型取得大模型的回答水平 這篇論文提出了三招,"大幅度"提升Mistral 7B模型的回答準確率 如果有想要把LLM微調好的人,一定不能錯過這篇
為了提高文字生成影像的品質,openAI 團隊用了三招: 第一招,利用模型將文字"升取樣",產生出許多描述細節 第二招,用CLIP ViT產生Embeddings,計算Cosine similarities 第三招: 使用GPT4,對生成結果進行評比。
作者提出一新框架SELF-RAG,強調了大型語言模型(LMMs)的質量和事實性改進,依據需求自動檢索段落,以反思標記生成和評估內容。SELF-RAG讓LMMs自主決定檢索時機和內容,並使其能評估自身生成。實驗表明SELF-RAG改寫LMMs規則,為自主學習和多任務適應的未來鋪平道路。
為了避免GPT模型對人類社會造成危害,要有一個指標來評量個語言模型的資訊透明度。當有關於模型的公開訊息越多,無論是訓練資料的取得來源與資料搜集方法,還是模型細節的接露,與產生結果的限制用途與目標客群等等,都是這篇論文關心且要衡量的指標,藉由評分防止發行人工智慧的大科技公司可能造成的社會危害
訓練一個專屬於自己的守護神有其重要性,可以幫你個性化的解決問題,例如,如果上班常常解讀每個公司的資產負債表,則你可以利用文中的Fuyu-8b model專門的去學習如何看資產負債表,把你手邊有的案例都讓他學習一遍,這樣未來可以解放雙手,輕鬆上班完成任務。
每天有這麼多的金融數據在變化著,做為一個非全職投資人,要如何同時間掌握這麼多經濟數據與新聞報導,替投資理財做下相對正確的判斷,這時候你會需要自己的投資守護神語言模型,藉由新聞與訊息的整理爬蟲,導入自行訓練的守護神語言模型,讓他每天定時產生社論與投資建議,藉由Email 送出來給您參考,省去你不少時間
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Bidirectional Encoder Representations from Transformers (BERT) 只有 Encoder Layer,沒有 D
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 39 至 AI說書 - 從0開始 - 69 的第二章內容,我們拿 Encoder 出來看: 幾點注意如下: BERT 模型使用 M
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 要學習 BERT (Bidirectional Encoder Representations from Transformers) 的架構,需要先複習本書第二章的 A
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在某些情況下,別人提供的 Pretrained Transformer Model 效果不盡人意,可能會想要自己做 Pretrained Model,但是這會耗費大量運
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 82 到 AI說書 - 從0開始 - 85 的說明,有一個很重要的結論:最適合您的模型不一定是排行榜上最好的模型,您需要學習 NLP 評
大語言模型通常會生產自己的「嵌入 Embedding」作為部分的輸入層, 並且在大語言模型的訓練途中不斷優化嵌入的方式, 以對特定的任務特定的數據優化。 而大語言模型使用的「嵌入維度 Embedding Dimension」通常是高維度的, 例如最小的GPT-2模型有1億1千
Thumbnail
上回我們講到 Word Embedding 能夠將字詞表示從使用字典索引改成詞向量表示,且這個詞向量能夠包含一定程度上的語義訊息,今天就讓我們探討 Word Embedding 到底是如何訓練成的。
大語言模型是一種特殊的神經網路,設計來理解,生成與回應人類的文本。 大語言模型是使用大量文本數據訓練的深度神經網路,其訓練使用的文本數據甚至包括了整個網路公開的文本。 大語言模型的「大」,體現於模型的參數個數以及其使用的訓練數據集。如此大的模型可以有百億甚至千億的參數。這些參數都是神經網
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 129 中說,Bidirectional Encoder Representations from Transformers (BER
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 Bidirectional Encoder Representations from Transformers (BERT) 只有 Encoder Layer,沒有 D
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在 AI說書 - 從0開始 - 127 中提及: Transformer 的關鍵參數為: 原始 Transformer 模型中,左圖的 N = 6 原始 Tran
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 39 至 AI說書 - 從0開始 - 69 的第二章內容,我們拿 Encoder 出來看: 幾點注意如下: BERT 模型使用 M
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 要學習 BERT (Bidirectional Encoder Representations from Transformers) 的架構,需要先複習本書第二章的 A
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 在某些情況下,別人提供的 Pretrained Transformer Model 效果不盡人意,可能會想要自己做 Pretrained Model,但是這會耗費大量運
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 82 到 AI說書 - 從0開始 - 85 的說明,有一個很重要的結論:最適合您的模型不一定是排行榜上最好的模型,您需要學習 NLP 評
大語言模型通常會生產自己的「嵌入 Embedding」作為部分的輸入層, 並且在大語言模型的訓練途中不斷優化嵌入的方式, 以對特定的任務特定的數據優化。 而大語言模型使用的「嵌入維度 Embedding Dimension」通常是高維度的, 例如最小的GPT-2模型有1億1千
Thumbnail
上回我們講到 Word Embedding 能夠將字詞表示從使用字典索引改成詞向量表示,且這個詞向量能夠包含一定程度上的語義訊息,今天就讓我們探討 Word Embedding 到底是如何訓練成的。
大語言模型是一種特殊的神經網路,設計來理解,生成與回應人類的文本。 大語言模型是使用大量文本數據訓練的深度神經網路,其訓練使用的文本數據甚至包括了整個網路公開的文本。 大語言模型的「大」,體現於模型的參數個數以及其使用的訓練數據集。如此大的模型可以有百億甚至千億的參數。這些參數都是神經網