[Python][物件辨識]Yolo v8_Streamlit_網頁預測

更新於 發佈於 閱讀時間約 16 分鐘

python Streamlit連動github程式碼實現YoloV8網頁版偵測物件

先致敬,YoloV8原作Github程式碼

Streamlit網頁 實現YoloV8 偵測物件

套用模型為YoloV8(YOLOv8n)最小模型,因github上傳檔案最大上限為25mb

導入圖像(搜尋街景圖隨意抓取)

Streamlit網頁 實現YoloV8 偵測物件連結

raw-image

github資料夾說明

image -> 圖檔放置

model -> 存放模型

pages -> 呈現在streamlit上的程式碼放置位置

requirements.txt -> streamlit指定安裝python套件版本

packages.txt -> streamlit 安裝yolov8 libraries用

raw-image

程式碼:

import streamlit as st
from skimage import io
import numpy as np
from ultralytics import YOLO
import matplotlib.pyplot as plt # 新增這一行
from ultralytics.utils.plotting import Annotator
from PIL import Image #1024

st.title("上傳圖片辨識")
st.info("YOLO_V8), 80 個類別的物體檢測,這些類別包括人,動物,交通工具,家具等")

uploaded_file = st.file_uploader("上傳圖片", type=['jpg', 'jpeg', 'png', 'gif'])
colors_rgb = {str(i): ((i * 30) % 256, (i * 50) % 256, (i * 70) % 256) for i in range(30)}

if uploaded_file is not None:

image = io.imread(uploaded_file)
if image.shape[-1] == 4: # 如果通道數為4,通常是带有alpha通道的圖像
image = image[:, :, :3] # 去除alpha通道

# 載入模型
pretrained_weights_path = './model/yolov8n.pt'
yolo = YOLO()
yolo = yolo.load(pretrained_weights_path)
try:
results = yolo.predict(image) #預測指令
# 顯示結果
st.subheader("檢測結果")
colors_count = 0
result_str = []
# 顯示物件類別
print(results[0].boxes.cls)
# # print()
for i, result in enumerate(results):
annotator = Annotator(image)
boxes = result.boxes
for box in boxes:
cls = box.cls
xyxy = box.xyxy[0]
result_str_1 = yolo.names[int(cls[0])]
result_str.append(result_str_1)
annotator.box_label(xyxy,yolo.names[int(cls[0])],colors_rgb[f'{colors_count}'])
colors_count += 1
img = annotator.result()
# 顯示標註後的圖片
st.image(img, caption="檢測結果", use_column_width=True)
st.write(result_str)

except Exception as e:
print(f"Error during prediction: {e}")

程式碼說明

st.title("上傳圖片辨識")
st.info("YOLO_V8), 80 個類別的物體檢測,這些類別包括人,動物,交通工具,家具等")

`st.title` 網頁開頭標題,Streamlit 中用來顯示標題的函式

`st.info` 可新增說明內容,是 Streamlit 中的一個函式,用於顯示信息提示框

raw-image
uploaded_file = st.file_uploader("上傳圖片", type=['jpg', 'jpeg', 'png', 'gif'])

st.file_uploader 是 Streamlit 中用來創建檔案上傳元件的函式。它允許使用者在應用程式的網頁界面上選擇並上傳檔案,通常用於接收使用者提供的圖片、文件等。

raw-image
colors_rgb = {str(i): ((i * 30) % 256, (i * 50) % 256, (i * 70) % 256) for i in range(30)}

這一段程式碼創建了一個名為 colors_rgb 的字典,其中包含了30種不同的RGB顏色,為了YoloV8偵測到的物件,框起來顏色不同所設計,用到的是python語法中生成器的一種概念。

  1. for i in range(30):這是一個迴圈,從0到29迭代,共迭代30次。
  2. {str(i): ((i * 30) % 256, (i * 50) % 256, (i * 70) % 256) for i in range(30)}:這是一個字典生成式,用於創建一個包含30個鍵值對的字典。每個鍵都是i的字串表示,而對應的值是一個包含三個數字的元組,這三個數字分別代表紅色(R)、綠色(G)和藍色(B)的值。
if uploaded_file is not None:

這個if條件語句檢查是前面創建的上傳檔案按鈕的變數 uploaded_file 是否為非空值(不是 None)。在這個上下文中,它用於確保在使用者上傳了檔案之後才執行相應的程式碼塊。

具體來說,在這個程式中,如果 uploaded_file 不是 None,代表使用者已經上傳了一個檔案,那麼下面的程式碼塊就會被執行。這通常是為了處理使用者上傳的檔案,例如讀取並顯示圖片,進行檔案的處理或分析等相應的操作。

這樣的條件語句有助於檔案上傳的情況下執行相應的邏輯,同時避免沒有檔案上傳時執行相關程式碼,防止出現錯誤或不必要的操作

    image = io.imread(uploaded_file)
if image.shape[-1] == 4: # 如果通道數為4,通常是带有alpha通道的圖像
image = image[:, :, :3] # 去除alpha通道
  1. image = io.imread(uploaded_file):使用 io.imread 函式讀取上傳的檔案,並將其資料轉換為圖片數據。這裡使用的是 skimage 库的 io 模組。
  2. if image.shape[-1] == 4::這個條件語句檢查圖片的通道數是否為4。通常,如果一張圖片具有4個通道,那麼它帶有一個 alpha 通道,表示透明度。
  3. image = image[:, :, :3]:只保留前三個通道(紅、綠、藍),將圖片轉換為一個沒有透明度信息的普通RGB圖片。

總的來說,這段程式碼確保讀取的圖片是一個三通道的RGB圖片,去除了可能存在的 alpha 通道。這樣的處理通常是為了確保後續的圖片處理和模型預測能夠正確進行。

    # 載入模型
pretrained_weights_path = './model/yolov8n.pt'
yolo = YOLO()
yolo = yolo.load(pretrained_weights_path)
  1. pretrained_weights_path = './model/yolov8n.pt':這是一個相對路徑,指向存儲了預先訓練權重的檔案。
  2. yolo = YOLO():創建一個 YOLO 模型。
  3. yolo = yolo.load(pretrained_weights_path):使用 load 方法載入預先訓練的權重。這個方法將預先訓練的權重載入到之前創建的 YOLO 模型,以便使用這些權重進行物體檢測
try:
results = yolo.predict(image) #預測指令
# 顯示結果
st.subheader("檢測結果")
colors_count = 0
result_str = []
# 顯示物件類別
print(results[0].boxes.cls)
# # print()
for i, result in enumerate(results):
annotator = Annotator(image)
boxes = result.boxes
for box in boxes:
cls = box.cls
xyxy = box.xyxy[0]
result_str_1 = yolo.names[int(cls[0])]
result_str.append(result_str_1)
annotator.box_label(xyxy,yolo.names[int(cls[0])],colors_rgb[f'{colors_count}'])
colors_count += 1
img = annotator.result()
# 顯示標註後的圖片
st.image(img, caption="檢測結果", use_column_width=True)
st.write(result_str)
  1. results = yolo.predict(image):使用載入的 YOLO 模型對上傳的圖片進行預測。results 包含了檢測結果,每個結果對應一個或多個檢測到的物件。
  2. st.subheader("檢測結果"):使用 Streamlit 的 st.subheader 函式顯示一個子標題,標題為 "檢測結果"。
  3. colors_count = 0 定義偵測框的初始值,給先前建立的顏色字典做索引的使用
  4. result_str = [] 建立result_str的list,儲存偵測到的結果用
        for i, result in enumerate(results):
annotator = Annotator(image)
boxes = result.boxes
for box in boxes:
cls = box.cls
xyxy = box.xyxy[0]
result_str_1 = yolo.names[int(cls[0])]
result_str.append(result_str_1)
annotator.box_label(xyxy,yolo.names[int(cls[0])],colors_rgb[f'{colors_count}'])
colors_count += 1

這段程式碼是一個迴圈,用於處理模型的每個檢測結果,並在圖片上標註檢測框和物件類別

  1. for i, result in enumerate(results)::這個迴圈遍歷模型的每個預測結果,enumerate(results) 同時提供了索引 i 和對應的檢測結果 result
  2. annotator = Annotator(image):為每個檢測結果創建一個 Annotator 實例,這個實例用於在圖片上添加標註。
  3. boxes = result.boxes:取得當前檢測結果中的所有檢測框。
  4. for box in boxes::這個迴圈遍歷每個檢測框。
  5. cls = box.cls:取得檢測框中物件的類別。
  6. xyxy = box.xyxy[0]:取得檢測框的四個座標點。
  7. result_str_1 = yolo.names[int(cls[0])]:根據物件的類別索引,從模型的 yolo.names 中取得物件的名稱。
  8. result_str.append(result_str_1):將檢測到的物件名稱加入到 result_str 列表中。
  9. annotator.box_label(xyxy, yolo.names[int(cls[0])], colors_rgb[f'{colors_count}']):使用 Annotator 的 box_label 方法,在圖片上標註檢測框和物件類別,同時指定標註的顏色。
  10. colors_count += 1:更新顏色計數,以便每個不同的物件標註使用不同的顏色。
  11. 迴圈結束後,img = annotator.result():取得標註後的圖片,包含了所有檢測結果的標註。

總的來說,這段程式碼的目的是遍歷模型預測的每個檢測框,為每個檢測框添加標註,包括物件類別和邊界框,然後取得標註後的圖片。這個圖片將在後續用於顯示檢測結果。

 # 顯示標註後的圖片
st.image(img, caption="檢測結果", use_column_width=True)
st.write(result_str)

這兩行程式碼用於在 Streamlit 的界面上顯示物體檢測的結果:

  1. st.image(img, caption="檢測結果", use_column_width=True):使用 st.image 函式顯示標註後的圖片。這裡的 img 是經過標註的圖片,caption 參數指定了圖片的標題,並且 use_column_width=True 使得圖片的寬度自適應列的寬度。
  2. st.write(result_str):使用 st.write 函式顯示檢測到的物件名稱。這將在應用程式的界面上顯示一個區域,其中包含了所有檢測到的物件的名稱。

謝謝大家看完了一大推廢話,希望對大家有幫助





avatar-img
129會員
217內容數
本業是影像辨識軟體開發,閒暇時間進修AI相關內容,將學習到的內容寫成文章分享。
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
螃蟹_crab的沙龍 的其他內容
for,while,do while語法介紹 for loop for比較偏向固定圈數型的迴圈 語法 for(計數變數初值; 布林運算式 ; 增量運算) { : 一般指令; : }
巢狀迴圈For loop介紹結構及範例說明 巢狀迴圈 巢狀迴圈是在一個迴圈內包含另一個迴圈的結構 簡單來說,就是內迴圈做完,才會在跑到外迴圈,接著在做內迴圈
IF,Switch,三元運算子語法說明 IF條件選擇結構說明 IF為布林條件,當()內條件式滿足True執行if區塊的程式碼,不滿足則執行else區塊的程式碼,若無else也行。
介紹C++ 語法 資料型態,架構說明 程式語言為人類與電腦溝通的工具 程式設計流程: 定義問題 -> 問題分析 -> 撰寫演算法 ->程式撰寫 -> 程式執行及維護
for,while,do while語法介紹 for loop for比較偏向固定圈數型的迴圈 語法 for(計數變數初值; 布林運算式 ; 增量運算) { : 一般指令; : }
巢狀迴圈For loop介紹結構及範例說明 巢狀迴圈 巢狀迴圈是在一個迴圈內包含另一個迴圈的結構 簡單來說,就是內迴圈做完,才會在跑到外迴圈,接著在做內迴圈
IF,Switch,三元運算子語法說明 IF條件選擇結構說明 IF為布林條件,當()內條件式滿足True執行if區塊的程式碼,不滿足則執行else區塊的程式碼,若無else也行。
介紹C++ 語法 資料型態,架構說明 程式語言為人類與電腦溝通的工具 程式設計流程: 定義問題 -> 問題分析 -> 撰寫演算法 ->程式撰寫 -> 程式執行及維護
你可能也想看
Google News 追蹤
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
Tesseract 是一個開源的光學字符識別 (OCR) 引擎,可通過自定義訓練來改進對特定字體或語言的識別。 以下是一份基於 tesstrain 工具,並針對 Windows CMD 的完整 Tesseract 5 訓練教學。將利用官方提供的ocrd-testset.zip來做示範 前置
Python 的物件導向程式設計 (Object-Oriented Programming, OOP) 是其最強大和靈活的特性之一。通過 OOP 的思想,我們可以組織、抽象並簡化程式碼結構,以達到更好的可維護性和可擴展性。
Thumbnail
在OpenCV中可以利用 cv2.findContours 判斷物件的形狀,可以通過計算輪廓的某些特徵來實現的。 本文主要利用cv2.arcLength與cv2.approxPolyDP來判斷三角形,正方形,矩形。檢查是否為圓形,則用通過輪廓面積和邊界框面積的比率來判斷。
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框
Thumbnail
現代社會跟以前不同了,人人都有一支手機,只要打開就可以獲得各種資訊。過去想要辦卡或是開戶就要跑一趟銀行,然而如今科技快速發展之下,金融App無聲無息地進到你生活中。但同樣的,每一家銀行都有自己的App時,我們又該如何選擇呢?(本文係由國泰世華銀行邀約) 今天我會用不同角度帶大家看這款國泰世華CUB
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
Tesseract 是一個開源的光學字符識別 (OCR) 引擎,可通過自定義訓練來改進對特定字體或語言的識別。 以下是一份基於 tesstrain 工具,並針對 Windows CMD 的完整 Tesseract 5 訓練教學。將利用官方提供的ocrd-testset.zip來做示範 前置
Python 的物件導向程式設計 (Object-Oriented Programming, OOP) 是其最強大和靈活的特性之一。通過 OOP 的思想,我們可以組織、抽象並簡化程式碼結構,以達到更好的可維護性和可擴展性。
Thumbnail
在OpenCV中可以利用 cv2.findContours 判斷物件的形狀,可以通過計算輪廓的某些特徵來實現的。 本文主要利用cv2.arcLength與cv2.approxPolyDP來判斷三角形,正方形,矩形。檢查是否為圓形,則用通過輪廓面積和邊界框面積的比率來判斷。
Thumbnail
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框