colab

含有「colab」共 10 篇內容
全部內容
發佈日期由新至舊
前言 最近在研究GAT,在網路上看到使用torch和DGL實作的GAT模型的程式碼,就想說下載下來自己跑跑看,這篇文章:Understand Graph Attention Network。途中遇到問題,把找到的解法記錄下來,給也有一樣問題的朋友參考。 正文 在Colab直接使用: !p
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是n,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 7,已經完成Colab Python環境配置。 針對Attention Layer的程式配置為: start_time =
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧我們在AI說書 - 從0開始 - 6中說當Context長度是d,且每個字用d維度的向量表示時有以下結論: Attention Layer的複雜度是O(n^2 *
工欲善其事,必先利其器,要打造屬於自己的Chat GPT之前,我們先學習怎麼建立Google免費提供的Colab環境,它可以免費使用GPU來加速AI的運算,非常適合沒有錢添購GPU,但又想學習前沿AI技術的人。 第一步:打開Google瀏覽器,並點選右上方的「方格子點點」,接著選擇「雲端硬碟」
stable diffusion 是一款AI繪圖軟體,你可以免費把stable diffusion算出來的圖免費拿來商用,但是像我的電腦因為顯卡太舊而無法快速運行,而浪費很多時間,你只要準備一個google帳號即可。
Thumbnail