ADC的Vref+/Vref-

更新於 發佈於 閱讀時間約 1 分鐘

使用ADC時必須注意

MCU上會有Vref腳位,這兩個腳位必須接上VDD及GND。

這兩個腳位是專門給ADC使用的,ADC在轉換時會需要參考電壓來轉換成digital。公式如下

​digital = (Vin / Vref) * 2^12

digital:是電腦讀取到的數值。
Vin:輸入腳位真實的電壓。
Vref:ADC的參考電壓=Vref+ - Vref-
2^12:是指MCUADC的轉換精度。​(AT32F413是固定2^12位的轉換精度)

在使用時,通常看到的數值是digital,也就是轉換過後的值,
若我們要知道目前這隻腳位的電壓是多少,必須求出Vin,
上述公式移項後即可求得Vin。

Vin = digital*Vref /2^12

依照上述公式,ADC轉換後的數值會因為參考電壓的值改變。

因此MCU上的Vref+/Vref-這兩隻腳必須分別接到VDD/GND。


另外,依照上述公式可以了解到,如果參考電壓浮動太大的話,會導致ADC讀取的值不夠準確且不穩定。通常加大負載的瞬間,會導致電流上升及電壓下降。

VDDA/Vref+要接VDD;VSS/Vref-要接GND

VDDA/Vref+要接VDD;VSS/Vref-要接GND





留言
avatar-img
留言分享你的想法!
avatar-img
陳振元的沙龍
0會員
3內容數
你可能也想看
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
「欸!這是在哪裡買的?求連結 🥺」 誰叫你太有品味,一發就讓大家跟著剁手手? 讓你回購再回購的生活好物,是時候該介紹出場了吧! 「開箱你的美好生活」現正召喚各路好物的開箱使者 🤩
Thumbnail
數位IC裡我們關注的都是0或1, 大家都知道電腦是0101在做二進位的運算, 在晶片裡又是怎麼做到的? 實際上我們在設計晶片時,會給他一個VDD跟GND, VDD-GND給的是預期的Driving volatge, 像是5V或9V 以5V為例 0或1物理上就是目前的電壓靠近0V或5
Thumbnail
數位IC裡我們關注的都是0或1, 大家都知道電腦是0101在做二進位的運算, 在晶片裡又是怎麼做到的? 實際上我們在設計晶片時,會給他一個VDD跟GND, VDD-GND給的是預期的Driving volatge, 像是5V或9V 以5V為例 0或1物理上就是目前的電壓靠近0V或5
Thumbnail
傳統馬達會利用調整電阻值的大小,來直接限制馬達輸入電流的上限;但電阻值的增加也會導致銅損值上升,是種如同雙面刃的技法。所幸隨著電控技術的進步,馬達電流的限制工作可以轉交給驅動電路掌控,馬達僅需要盡可能地降低電阻值即可;更直白的說就是漆包線徑越粗越好,暨可以降低馬達電阻,還同時強化散熱能力,以得到更優
Thumbnail
傳統馬達會利用調整電阻值的大小,來直接限制馬達輸入電流的上限;但電阻值的增加也會導致銅損值上升,是種如同雙面刃的技法。所幸隨著電控技術的進步,馬達電流的限制工作可以轉交給驅動電路掌控,馬達僅需要盡可能地降低電阻值即可;更直白的說就是漆包線徑越粗越好,暨可以降低馬達電阻,還同時強化散熱能力,以得到更優
Thumbnail
本計算工具是建立在已有一份永磁馬達特性數據後,忽然想要知道更換工作電壓值後,馬達的輸出特性會有甚麼變化。原始檔案範例為24V的直流永磁馬達,想要使用18V的行動電池供電,需要了解馬達特性會有怎樣的改變。 首先可以預先判斷,由於永磁馬達的電壓與轉速成正比關係,因此本案例中的調降工作電壓勢必造成馬達轉
Thumbnail
本計算工具是建立在已有一份永磁馬達特性數據後,忽然想要知道更換工作電壓值後,馬達的輸出特性會有甚麼變化。原始檔案範例為24V的直流永磁馬達,想要使用18V的行動電池供電,需要了解馬達特性會有怎樣的改變。 首先可以預先判斷,由於永磁馬達的電壓與轉速成正比關係,因此本案例中的調降工作電壓勢必造成馬達轉
Thumbnail
認識的友人詢問,才讓筆者再次想起馬達電流密度這項參數;事實上筆者已經不太使用這一設計指標了,但長久以來的馬達相關經歷,不免會有這樣的小工具在手上,因此分享給大家,檔案連結如下,請自行取用: 電流密度設計 電流密度計算的小工具分為兩種模式,分別為已知馬達功率的情況下,給定設定之電流密度目標,計算出
Thumbnail
認識的友人詢問,才讓筆者再次想起馬達電流密度這項參數;事實上筆者已經不太使用這一設計指標了,但長久以來的馬達相關經歷,不免會有這樣的小工具在手上,因此分享給大家,檔案連結如下,請自行取用: 電流密度設計 電流密度計算的小工具分為兩種模式,分別為已知馬達功率的情況下,給定設定之電流密度目標,計算出
Thumbnail
本文是筆者在查反電動勢公式時,赫然發現並未詳細描述,故進行補完。 反電動勢的數學公式,最常出現在馬達電器方程式當中,是用來描述馬達運作時的電能狀態的數學表示式;如下列所式,其中V為馬達輸入電壓,i為馬達電流,Rm則是馬達電阻,Lm是馬達電感,di/dt代表電流對時間的微分,因為馬達電感的作用僅在電
Thumbnail
本文是筆者在查反電動勢公式時,赫然發現並未詳細描述,故進行補完。 反電動勢的數學公式,最常出現在馬達電器方程式當中,是用來描述馬達運作時的電能狀態的數學表示式;如下列所式,其中V為馬達輸入電壓,i為馬達電流,Rm則是馬達電阻,Lm是馬達電感,di/dt代表電流對時間的微分,因為馬達電感的作用僅在電
Thumbnail
實際上就算直接使用專業檢試設備對馬達進行量測,仍然會受限於裝置的硬體使用範圍條件,無法完整的量測到馬達特性數據,僅有可量測範圍內的數據資料。退而求其次,針對無法直接量測的部分,可藉由數學演算的方式,將整份馬達特性曲線圖及數據表產出。 而當馬達特性是藉由演算獲得,也就代表可以簡單地透過excel就得
Thumbnail
實際上就算直接使用專業檢試設備對馬達進行量測,仍然會受限於裝置的硬體使用範圍條件,無法完整的量測到馬達特性數據,僅有可量測範圍內的數據資料。退而求其次,針對無法直接量測的部分,可藉由數學演算的方式,將整份馬達特性曲線圖及數據表產出。 而當馬達特性是藉由演算獲得,也就代表可以簡單地透過excel就得
Thumbnail
這篇介紹如何用加速度取得傾斜角度。 用的是和前篇一樣的<basicMpu6050.h>
Thumbnail
這篇介紹如何用加速度取得傾斜角度。 用的是和前篇一樣的<basicMpu6050.h>
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News