【💊 Python的解憂錦囊】如何使用Buffer流將檔案分段上傳至Minio

更新於 發佈於 閱讀時間約 4 分鐘
raw-image


MinIO 是一個高性能的物件存儲系統,設計用於大規模的數據存儲需求, 甚至是各種非結構化數據也都能往這邊儲存, 也支持群集擴展, 非常適合正在尋找儲存方案的朋友們。


我們在「【💎 Message Queue - Kafka 案例篇】如何將檔案流上傳到minio - 完整檔案 」介紹了如何從kafka將資料流到minio, 但該篇的主軸在於完整的檔案一次上傳, 這一次我們要來鑽研一下如何模擬本地檔案串流上傳到minio的過程, 接著我們會另外撰寫一篇主題來談談如何結合kafka。


我們今天的主題來談談如何使用Python將檔案「串流」上傳到minio,為什麼要特別提到串流? 主要是隨著時代的演進, 應用逐漸從批次處理轉為即時處理, 使用者體驗逐漸強調「即時」, 而背後的技術從應用程式、訊息佇列、資料庫、儲存媒介也都開始支持「串流功能」, 今天我們將針對「MinIO」這套媒介進行「串流」功能的介紹, 並實際使用「Python」進行展示。


環境準備

這邊我們使用docker來運行minio, 並提供docker compose的配置檔如下:

 minio:
image: minio/minio:latest
container_name: minio
ports:
- "9000:9000"
- "9001:9001"
environment:
MINIO_ACCESS_KEY: minioadmin
MINIO_SECRET_KEY: minioadmin
command: server /data --console-address ":9001"


接著請啟動服務:

docker compose up -d


啟動服務之後我們就準備開始實作囉!


安裝套件

這邊我們需要安裝一下Minio Client才能由客戶端進行檔案上傳。

pip install minio



設定minio連線資訊並創建Bucket

client = Minio(
endpoint='minio:9000',
access_key='minioadmin',
secret_key='minioadmin',
secure=False,
)

bucket_name = 'files'

# 建立儲存桶
if not client.bucket_exists(bucket_name):
client.make_bucket(bucket_name)


設計內部Buffer流

這個內部Buffer流主要做為minio put_object與記憶體之間的檔案封包橋樑, 我們可能會從本地檔案、kafka、遠端伺服器拉取檔案封包, 我們可以將這些檔案封包暫存在我們記憶體實作的I/O流, 讓minio client自動去分塊上傳, 避免大檔案要一次拿取完才能上傳到minio伺服器。


這個Buffer流的實作是關鍵重點的部份, 它就像接水管一樣, 將來源與目的橋接, 順利讓資料流入, 大致上的設計草圖如下:

raw-image


程式碼如下:

raw-image



引流並上傳到Minio

我們將上傳到minio的部份用另外一個執行緒去進行, 這是因為我們必須讓讀寫分離才能夠很好的實驗控制的邏輯。


當我們讀完「【💎 Message Queue - Kafka 案例篇】如何將檔案流上傳到minio - 完整檔案 」 都知道上傳的關鍵函數是「put_object」, 它可以接入一條資料水管, 正好將我們設計的資料水管給接入看看。

raw-image



驗證成功與否

我們試著打開Monitoring → Trace來追蹤上傳的狀況, 這邊我們可以看到每5MB一包為單位進行上傳的過程。

raw-image



最後上傳成功才會出現檔案如下:

raw-image



結語

處理部份上傳的部份也真是不容易啊! 過程中不斷的翻閱官方文檔與試誤, 最終勉強的試出一條可以用Buffer流控制分段上傳的實現方案, 也讓我們更深入的了解到put_object的使用方式。


留言
avatar-img
留言分享你的想法!
avatar-img
阿Han的沙龍
130會員
288內容數
哈囉,我是阿Han,是一位 👩‍💻 軟體研發工程師,喜歡閱讀、學習、撰寫文章及教學,擅長以圖代文,化繁為簡,除了幫助自己釐清思路之外,也希望藉由圖解的方式幫助大家共同學習,甚至手把手帶您設計出高品質的軟體產品。
阿Han的沙龍的其他內容
2025/01/29
🤔 簡單且靜態就足夠了? 相信我們在開發Python應用程式的過程中, 常常會借用Enum來定義我們可能的選項, 就像顏色紅、綠、黃會有這樣的結構: class Color(str, Enum): RED = 'red' GREED = 'green' YELLOW = 'yel
Thumbnail
2025/01/29
🤔 簡單且靜態就足夠了? 相信我們在開發Python應用程式的過程中, 常常會借用Enum來定義我們可能的選項, 就像顏色紅、綠、黃會有這樣的結構: class Color(str, Enum): RED = 'red' GREED = 'green' YELLOW = 'yel
Thumbnail
2025/01/08
當我們的系統發展到一定程度時, 難免會面臨到正式上線的問題, 要如何讓維運更加簡易呢? 尤其隨著複雜的客製化配置的出現時, 我們應該如何有效的管理, 甚至驗證配置是否如預期資料型態、格式…, 而正好 pydantic 可以滿足這樣的需求, 就讓我們來看看怎麼使用吧! 需安裝的套件 pip i
Thumbnail
2025/01/08
當我們的系統發展到一定程度時, 難免會面臨到正式上線的問題, 要如何讓維運更加簡易呢? 尤其隨著複雜的客製化配置的出現時, 我們應該如何有效的管理, 甚至驗證配置是否如預期資料型態、格式…, 而正好 pydantic 可以滿足這樣的需求, 就讓我們來看看怎麼使用吧! 需安裝的套件 pip i
Thumbnail
2025/01/02
要如何使用unicorn啟動多個FastAPI服務, 歡迎參考我們的「【💊 Python的解憂錦囊 - FastAPI】如何啟動多個Workers」。 當我們試著設計帶入模組化時… 我們在「【💊 Python的解憂錦囊 - FastAPI】使用 lifespan 來共享資料與管理生命週期
Thumbnail
2025/01/02
要如何使用unicorn啟動多個FastAPI服務, 歡迎參考我們的「【💊 Python的解憂錦囊 - FastAPI】如何啟動多個Workers」。 當我們試著設計帶入模組化時… 我們在「【💊 Python的解憂錦囊 - FastAPI】使用 lifespan 來共享資料與管理生命週期
Thumbnail
看更多
你可能也想看
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
我們在學習kafka的過程中最不習慣的就是不管什麼樣的資料, 在kafka的傳輸過程都會是binary的資料格式, 因此我們在撰寫程式的過程中並不是那麼的直觀, 必須將資料從float、int…資料型態轉型成binary才能順利傳送, 那麼基於這樣的前提之下, python這套程式語言可以怎麼做
Thumbnail
我們在學習kafka的過程中最不習慣的就是不管什麼樣的資料, 在kafka的傳輸過程都會是binary的資料格式, 因此我們在撰寫程式的過程中並不是那麼的直觀, 必須將資料從float、int…資料型態轉型成binary才能順利傳送, 那麼基於這樣的前提之下, python這套程式語言可以怎麼做
Thumbnail
我們在「【Message Queue - Kafka】不斷的試誤…, 用Docker來嘗試安裝Kafka」有介紹如何架設kafka, 其中我們使用環境變數來進行kafka的配置, 但除了環境變數之外, 其實還能夠用檔案配置的方式來對kafka進行配置, 如此一來我們就可以將配置檔與啟動檔完全分開,
Thumbnail
我們在「【Message Queue - Kafka】不斷的試誤…, 用Docker來嘗試安裝Kafka」有介紹如何架設kafka, 其中我們使用環境變數來進行kafka的配置, 但除了環境變數之外, 其實還能夠用檔案配置的方式來對kafka進行配置, 如此一來我們就可以將配置檔與啟動檔完全分開,
Thumbnail
情境描述 我們在「🔒 阿Han的軟體心法實戰營 - kafka」有關於kafka的教學文章, 那麼在開發過程中我們遇到了 👻 詭異事件, 那就是我們嘗試在做一個檔案串流時, 發現Producer明明傳送了大約16MB檔案大小的封包到kafka, 每一包約(1024 * 1024 ) bytes
Thumbnail
情境描述 我們在「🔒 阿Han的軟體心法實戰營 - kafka」有關於kafka的教學文章, 那麼在開發過程中我們遇到了 👻 詭異事件, 那就是我們嘗試在做一個檔案串流時, 發現Producer明明傳送了大約16MB檔案大小的封包到kafka, 每一包約(1024 * 1024 ) bytes
Thumbnail
為什麼會有Schema Registry的出現? 因為Kafka的零拷貝原則, 也就是kafka本身並不會去碰觸到訊息也不進行資料驗證, 而是bypass的傳送, 預設都以位元組來傳輸資料會比較有效率, 但位元組誰看得懂啊...。 加上Kafka的特性是生產者與消費者並不能直接溝通, 因
Thumbnail
為什麼會有Schema Registry的出現? 因為Kafka的零拷貝原則, 也就是kafka本身並不會去碰觸到訊息也不進行資料驗證, 而是bypass的傳送, 預設都以位元組來傳輸資料會比較有效率, 但位元組誰看得懂啊...。 加上Kafka的特性是生產者與消費者並不能直接溝通, 因
Thumbnail
更快、更短、更即時是串流傳輸必要的元素, 而我們常常在使用Python請求API時都是等待式回應, 也就是一個請求過去之後, 待對方處理完畢後再行回應, 但假設需要下載的檔案、內容非常大時, 是不是使用者只能傻傻的等待整個傳輸結束後才能顯示? 這樣的使用者體驗也實在太糟糕了, 對於使用者來說除了完全
Thumbnail
更快、更短、更即時是串流傳輸必要的元素, 而我們常常在使用Python請求API時都是等待式回應, 也就是一個請求過去之後, 待對方處理完畢後再行回應, 但假設需要下載的檔案、內容非常大時, 是不是使用者只能傻傻的等待整個傳輸結束後才能顯示? 這樣的使用者體驗也實在太糟糕了, 對於使用者來說除了完全
Thumbnail
Lua 開檔寫檔的運用 io.output()...
Thumbnail
Lua 開檔寫檔的運用 io.output()...
Thumbnail
我們在「【🎓 Python的深度問答集】torchaudio 對部分段落進行音訊解碼」有分享到如何對一包包的封包進行音訊解碼, 但隨著音檔越大, 最終解碼的速度會越來越慢, 而這並非串流的本意, 串流應該就像水管一樣, 收到多少資料就運算多少量, 並不會隨著累積的容量越大而導致效能下降。 但實際
Thumbnail
我們在「【🎓 Python的深度問答集】torchaudio 對部分段落進行音訊解碼」有分享到如何對一包包的封包進行音訊解碼, 但隨著音檔越大, 最終解碼的速度會越來越慢, 而這並非串流的本意, 串流應該就像水管一樣, 收到多少資料就運算多少量, 並不會隨著累積的容量越大而導致效能下降。 但實際
Thumbnail
訊息的即時傳遞已然成為現代社會的趨勢了, 而扮演中樞平台的系統架構功能也漸趨複雜完整, Kafka是一個事件流平台, 正好滿足串流時代之下的即時訊息傳遞架構, 因此我們有必要深入來學習這套事件流平台, 不論是自動化、金融交易、IOT、物流…皆離不開即時的需求, 所以就讓我們蹲好馬步來好好的學習一
Thumbnail
訊息的即時傳遞已然成為現代社會的趨勢了, 而扮演中樞平台的系統架構功能也漸趨複雜完整, Kafka是一個事件流平台, 正好滿足串流時代之下的即時訊息傳遞架構, 因此我們有必要深入來學習這套事件流平台, 不論是自動化、金融交易、IOT、物流…皆離不開即時的需求, 所以就讓我們蹲好馬步來好好的學習一
Thumbnail
學習如何使用Python連接MongoDB進行憑證監控,包括建立MongoDB docker-compose、連接MongoDB、讀取yaml並寫入MongoDB、傳入env以及domain寫入MongoDB、讀取MongoDB、修改MongoDB、刪除MongoDB。
Thumbnail
學習如何使用Python連接MongoDB進行憑證監控,包括建立MongoDB docker-compose、連接MongoDB、讀取yaml並寫入MongoDB、傳入env以及domain寫入MongoDB、讀取MongoDB、修改MongoDB、刪除MongoDB。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News