【💊 Python的解憂錦囊】requests 流式(stream)請求

更新於 發佈於 閱讀時間約 3 分鐘

更快、更短、更即時是串流傳輸必要的元素, 而我們常常在使用Python請求API時都是等待式回應, 也就是一個請求過去之後, 待對方處理完畢後再行回應, 但假設需要下載的檔案、內容非常大時, 是不是使用者只能傻傻的等待整個傳輸結束後才能顯示? 這樣的使用者體驗也實在太糟糕了, 對於使用者來說除了完全狀況外之外, 也不知道到底有沒有在運作, 而你知道嗎? 其實http request的請求也有支援「流(stream)」式的傳輸, 它可以怎麼用呢?我們底下才會一一進行說明。

Python的requests裡面有get、post、put、delete…功能, 其中有一個stream參數, 想必平常也不太會去使用它吧! 除非我們今天拿著get去取一個超大(100GB)的檔案, 我們就會知道怎麼一直在等、等、等…, 那究竟有沒有辦法下載一點點就儲存一點點或者處理一點點呢? 答案是有的, stream這個關鍵參數就是個關鍵, 它可以讓我們一包包的下載檔案或者文本, 假如是文本的話就可以即時的顯示給使用者, 大幅度的提昇使用者體驗。

raw-image


有哪些關鍵功能可以使用?

raw-image

requests有post、get、put、delete…, 裡面都可以設定stream參數, 而得到的response則有「iter_content」、「iter_lines」兩個函式可以一部分的拉取資料, 我們可以看看底下的使用範例。

不過通常我們只會用get、post來設定stream=True。


使用範例

response = requests.get(url, stream=True)
for chunk in response.iter_content(chunk_size=1024):
...對每個chunk進行處理

什麼時候開始流(stream)?

當我們進行請求時, 其實還沒有開始下載資料。

requests.get(xxx, stream=True)

而是呼叫了「iter_content」、「iter_lines」之後才會開始下載, 並且我們也可以決定一次要拉多少大小。

response = requests.get(xxx, stream=True)
for chunk in response.iter_content(chunk_size=1024):
xxx

注意事項

  • chunk_size如果太大, 那要注意記憶體夠不夠, 而且設定非常大的話不如就直接原生的等待回應。
  • stream=True時, 無法使用response.text或response.content, 而是要用「iter_content」、「iter_lines」讓資料像水流一下慢慢流。

結語

今天介紹的requests套件是我們在python常常請求API會使用到的, 只是stream平常真的比較少用, 那為什麼我們會注意到這個部份呢? 主要是我們在「🔒 阿Han的軟體心法實戰營 - kafka專區」會大量的學習到串流技術, 那其中的ksql篇章就會使用http的stream來串流讀取流式資料, 因此我們先開了這篇章來說明一番, 日後當您接觸到kafak這類的串流技術時相信肯定能派上用場。

留言
avatar-img
留言分享你的想法!
avatar-img
阿Han的沙龍
130會員
288內容數
哈囉,我是阿Han,是一位 👩‍💻 軟體研發工程師,喜歡閱讀、學習、撰寫文章及教學,擅長以圖代文,化繁為簡,除了幫助自己釐清思路之外,也希望藉由圖解的方式幫助大家共同學習,甚至手把手帶您設計出高品質的軟體產品。
阿Han的沙龍的其他內容
2025/01/29
🤔 簡單且靜態就足夠了? 相信我們在開發Python應用程式的過程中, 常常會借用Enum來定義我們可能的選項, 就像顏色紅、綠、黃會有這樣的結構: class Color(str, Enum): RED = 'red' GREED = 'green' YELLOW = 'yel
Thumbnail
2025/01/29
🤔 簡單且靜態就足夠了? 相信我們在開發Python應用程式的過程中, 常常會借用Enum來定義我們可能的選項, 就像顏色紅、綠、黃會有這樣的結構: class Color(str, Enum): RED = 'red' GREED = 'green' YELLOW = 'yel
Thumbnail
2025/01/08
當我們的系統發展到一定程度時, 難免會面臨到正式上線的問題, 要如何讓維運更加簡易呢? 尤其隨著複雜的客製化配置的出現時, 我們應該如何有效的管理, 甚至驗證配置是否如預期資料型態、格式…, 而正好 pydantic 可以滿足這樣的需求, 就讓我們來看看怎麼使用吧! 需安裝的套件 pip i
Thumbnail
2025/01/08
當我們的系統發展到一定程度時, 難免會面臨到正式上線的問題, 要如何讓維運更加簡易呢? 尤其隨著複雜的客製化配置的出現時, 我們應該如何有效的管理, 甚至驗證配置是否如預期資料型態、格式…, 而正好 pydantic 可以滿足這樣的需求, 就讓我們來看看怎麼使用吧! 需安裝的套件 pip i
Thumbnail
2025/01/02
要如何使用unicorn啟動多個FastAPI服務, 歡迎參考我們的「【💊 Python的解憂錦囊 - FastAPI】如何啟動多個Workers」。 當我們試著設計帶入模組化時… 我們在「【💊 Python的解憂錦囊 - FastAPI】使用 lifespan 來共享資料與管理生命週期
Thumbnail
2025/01/02
要如何使用unicorn啟動多個FastAPI服務, 歡迎參考我們的「【💊 Python的解憂錦囊 - FastAPI】如何啟動多個Workers」。 當我們試著設計帶入模組化時… 我們在「【💊 Python的解憂錦囊 - FastAPI】使用 lifespan 來共享資料與管理生命週期
Thumbnail
看更多
你可能也想看
Thumbnail
沙龍一直是創作與交流的重要空間,這次 vocus 全面改版了沙龍介面,就是為了讓好內容被好好看見! 你可以自由編排你的沙龍首頁版位,新版手機介面也讓每位訪客都能更快找到感興趣的內容、成為你的支持者。 改版完成後可以在社群媒體分享新版面,並標記 @vocus.official⁠ ♥️ ⁠
Thumbnail
沙龍一直是創作與交流的重要空間,這次 vocus 全面改版了沙龍介面,就是為了讓好內容被好好看見! 你可以自由編排你的沙龍首頁版位,新版手機介面也讓每位訪客都能更快找到感興趣的內容、成為你的支持者。 改版完成後可以在社群媒體分享新版面,並標記 @vocus.official⁠ ♥️ ⁠
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
訊息的即時傳遞已然成為現代社會的趨勢了, 影音也是如此, 即時! 即時! 即時! 已經是目前使用者體驗的必要元素了, 在這邊我們要分享的主題是如何在python程式語言的情境下使用ffmpeg來將音檔串流的轉換格式, 為什麼會有這樣的需求呢? 因為我們處理音檔時可能會需要統一輸出的格式, 當然背後也
Thumbnail
訊息的即時傳遞已然成為現代社會的趨勢了, 影音也是如此, 即時! 即時! 即時! 已經是目前使用者體驗的必要元素了, 在這邊我們要分享的主題是如何在python程式語言的情境下使用ffmpeg來將音檔串流的轉換格式, 為什麼會有這樣的需求呢? 因為我們處理音檔時可能會需要統一輸出的格式, 當然背後也
Thumbnail
我們在學習kafka的過程中最不習慣的就是不管什麼樣的資料, 在kafka的傳輸過程都會是binary的資料格式, 因此我們在撰寫程式的過程中並不是那麼的直觀, 必須將資料從float、int…資料型態轉型成binary才能順利傳送, 那麼基於這樣的前提之下, python這套程式語言可以怎麼做
Thumbnail
我們在學習kafka的過程中最不習慣的就是不管什麼樣的資料, 在kafka的傳輸過程都會是binary的資料格式, 因此我們在撰寫程式的過程中並不是那麼的直觀, 必須將資料從float、int…資料型態轉型成binary才能順利傳送, 那麼基於這樣的前提之下, python這套程式語言可以怎麼做
Thumbnail
需求情境: 在設計畫面時,資料來源是後台的 api,每一次畫面細節的修修改改,都會觸發 Xcode Preview 程序,導致不斷呼叫後台。此時若資料結構和大小都具有一定規模,就會導致效率低落,不斷等待,且消耗伺服器資源甚鉅。 解決方案: 將後台傳回的資料以檔案形式暫存在本地端,每次 pr
Thumbnail
需求情境: 在設計畫面時,資料來源是後台的 api,每一次畫面細節的修修改改,都會觸發 Xcode Preview 程序,導致不斷呼叫後台。此時若資料結構和大小都具有一定規模,就會導致效率低落,不斷等待,且消耗伺服器資源甚鉅。 解決方案: 將後台傳回的資料以檔案形式暫存在本地端,每次 pr
Thumbnail
更快、更短、更即時是串流傳輸必要的元素, 而我們常常在使用Python請求API時都是等待式回應, 也就是一個請求過去之後, 待對方處理完畢後再行回應, 但假設需要下載的檔案、內容非常大時, 是不是使用者只能傻傻的等待整個傳輸結束後才能顯示? 這樣的使用者體驗也實在太糟糕了, 對於使用者來說除了完全
Thumbnail
更快、更短、更即時是串流傳輸必要的元素, 而我們常常在使用Python請求API時都是等待式回應, 也就是一個請求過去之後, 待對方處理完畢後再行回應, 但假設需要下載的檔案、內容非常大時, 是不是使用者只能傻傻的等待整個傳輸結束後才能顯示? 這樣的使用者體驗也實在太糟糕了, 對於使用者來說除了完全
Thumbnail
我們在「【🎓 Python的深度問答集】torchaudio 對部分段落進行音訊解碼」有分享到如何對一包包的封包進行音訊解碼, 但隨著音檔越大, 最終解碼的速度會越來越慢, 而這並非串流的本意, 串流應該就像水管一樣, 收到多少資料就運算多少量, 並不會隨著累積的容量越大而導致效能下降。 但實際
Thumbnail
我們在「【🎓 Python的深度問答集】torchaudio 對部分段落進行音訊解碼」有分享到如何對一包包的封包進行音訊解碼, 但隨著音檔越大, 最終解碼的速度會越來越慢, 而這並非串流的本意, 串流應該就像水管一樣, 收到多少資料就運算多少量, 並不會隨著累積的容量越大而導致效能下降。 但實際
Thumbnail
前段時間我們有介紹「【Python 軍火庫🧨 - websockets】雙向溝通的渠道」, 這種方式可以達到基本的連線沒問題,但隨著資安意識的抬頭, 我們的websocket連線也會需要在通道之上進行加密, 那麼我們將根據使用情境來教您如何選用適當的連線。 Server端 我們的Serve
Thumbnail
前段時間我們有介紹「【Python 軍火庫🧨 - websockets】雙向溝通的渠道」, 這種方式可以達到基本的連線沒問題,但隨著資安意識的抬頭, 我們的websocket連線也會需要在通道之上進行加密, 那麼我們將根據使用情境來教您如何選用適當的連線。 Server端 我們的Serve
Thumbnail
當我們在撰寫一套系統的時候, 總是會提供一個介面讓使用者來觸發功能模組並回傳使用者所需的請求, 而傳統的安裝包模式總是太侷限, 需要個別主機獨立安裝, 相當繁瑣, 但隨著時代的演進與互聯網的崛起, 大部分的工作都可以藉由網頁端、裝置端來觸發, 而伺服端則是負責接收指令、運算與回傳結果, 雲端
Thumbnail
當我們在撰寫一套系統的時候, 總是會提供一個介面讓使用者來觸發功能模組並回傳使用者所需的請求, 而傳統的安裝包模式總是太侷限, 需要個別主機獨立安裝, 相當繁瑣, 但隨著時代的演進與互聯網的崛起, 大部分的工作都可以藉由網頁端、裝置端來觸發, 而伺服端則是負責接收指令、運算與回傳結果, 雲端
Thumbnail
我們在 【Python 軍火庫🧨 - websockets】傳送/接收音檔並轉換成numpy(基礎篇) 有聊到要如何透過Websocket來傳送音檔,但上一篇的作法是在Client端就進行音訊的解碼動作,這樣會有一個缺點,假設Client的機器運算效能較差,那麼運算的結果勢必會較慢出現,對於使用者
Thumbnail
我們在 【Python 軍火庫🧨 - websockets】傳送/接收音檔並轉換成numpy(基礎篇) 有聊到要如何透過Websocket來傳送音檔,但上一篇的作法是在Client端就進行音訊的解碼動作,這樣會有一個缺點,假設Client的機器運算效能較差,那麼運算的結果勢必會較慢出現,對於使用者
Thumbnail
先前幾篇筆記介紹了網路請求,瀏覽器儲存資料的方式,那麼實務上,前端最常需要發送網路請求的時候,就是透過呼叫 API,去向後端工程師發送/請求資料,所以今天來記錄什麼是 API吧!
Thumbnail
先前幾篇筆記介紹了網路請求,瀏覽器儲存資料的方式,那麼實務上,前端最常需要發送網路請求的時候,就是透過呼叫 API,去向後端工程師發送/請求資料,所以今天來記錄什麼是 API吧!
Thumbnail
Request內容 package main import ( "fmt" "log" "net/http" "strings" ) func request(w http.ResponseWriter, r *http.Request) { //這些資訊是輸出到伺服器端的列印訊息
Thumbnail
Request內容 package main import ( "fmt" "log" "net/http" "strings" ) func request(w http.ResponseWriter, r *http.Request) { //這些資訊是輸出到伺服器端的列印訊息
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News