【💊 Python的解憂錦囊】使用struct把資料打包成bytes的方法

更新於 發佈於 閱讀時間約 3 分鐘
raw-image


我們在學習kafka的過程中最不習慣的就是不管什麼樣的資料, 在kafka的傳輸過程都會是binary的資料格式, 因此我們在撰寫程式的過程中並不是那麼的直觀, 必須將資料從float、int…資料型態轉型成binary才能順利傳送, 那麼基於這樣的前提之下, python這套程式語言可以怎麼做呢?


如果您還不知道kafka是什麼? 歡迎加入「🔒 阿Han的軟體心法實戰營 - kafka專區」一起學習, 讓您的系統架構更為即時, 而這個篇章正是您在kafka的程式撰寫之中會使用到的一個環節。


struct模組主要有哪些功能?

  • 打包(Packing):將 Python 變量轉換為二進制數據表示形式。
  • 解包(Unpacking):將二進制數據轉換回 Python 變量。
  • 計算大小(calcsize)


常用的格式字元與對應數據

這張表在底下的範例中會常常出現的符號, 至於對應的資料型態是什麼就可以回來看看這張表做為一個對應。


怎麼用?

打包數據

將變數打包成binary, if代表整數跟浮點數

import struct

# 打包一個有符號整數 (i) 和一個浮點數 (f)
data = struct.pack('if', 42, 3.14)

# 打印結果為二進制數據
print(data)



解包數據

將binary解包成變數,if代表整數跟浮點數

import struct

# 解包先前打包的數據
data = struct.pack('if', 42, 3.14)
result = struct.unpack('if', data)

# 打印解包後的結果
print(result) # 輸出 (42, 3.140000104904175)



當我們將資料送到kafka時…

# 對標頭裡的欄位進行編碼
headers = {
'ratio': struct.pack('f', 0.14159),
}
# 生產訊息到kafka
producer.produce(
topic='xxx',
value='xxx',
headers=headers,
)

# === [producer] => [kafka] => [consumer] ======
# 消費者拉訊息
msg = consumer.poll(1.0)
headers = msg.headers()
headers = {x[0]: x[1] for x in headers}
ratio = struct.unpack('f', headers['ratio'])[0]
print(ratio)

結語

內建於Python模組, 怎麼能不好好運用呢? struct模組在進行二進制資料格式的時候非常有用, 讓我們一起學起來用用看吧!

留言
avatar-img
留言分享你的想法!
avatar-img
阿Han的沙龍
130會員
288內容數
哈囉,我是阿Han,是一位 👩‍💻 軟體研發工程師,喜歡閱讀、學習、撰寫文章及教學,擅長以圖代文,化繁為簡,除了幫助自己釐清思路之外,也希望藉由圖解的方式幫助大家共同學習,甚至手把手帶您設計出高品質的軟體產品。
阿Han的沙龍的其他內容
2025/01/29
🤔 簡單且靜態就足夠了? 相信我們在開發Python應用程式的過程中, 常常會借用Enum來定義我們可能的選項, 就像顏色紅、綠、黃會有這樣的結構: class Color(str, Enum): RED = 'red' GREED = 'green' YELLOW = 'yel
Thumbnail
2025/01/29
🤔 簡單且靜態就足夠了? 相信我們在開發Python應用程式的過程中, 常常會借用Enum來定義我們可能的選項, 就像顏色紅、綠、黃會有這樣的結構: class Color(str, Enum): RED = 'red' GREED = 'green' YELLOW = 'yel
Thumbnail
2025/01/08
當我們的系統發展到一定程度時, 難免會面臨到正式上線的問題, 要如何讓維運更加簡易呢? 尤其隨著複雜的客製化配置的出現時, 我們應該如何有效的管理, 甚至驗證配置是否如預期資料型態、格式…, 而正好 pydantic 可以滿足這樣的需求, 就讓我們來看看怎麼使用吧! 需安裝的套件 pip i
Thumbnail
2025/01/08
當我們的系統發展到一定程度時, 難免會面臨到正式上線的問題, 要如何讓維運更加簡易呢? 尤其隨著複雜的客製化配置的出現時, 我們應該如何有效的管理, 甚至驗證配置是否如預期資料型態、格式…, 而正好 pydantic 可以滿足這樣的需求, 就讓我們來看看怎麼使用吧! 需安裝的套件 pip i
Thumbnail
2025/01/02
要如何使用unicorn啟動多個FastAPI服務, 歡迎參考我們的「【💊 Python的解憂錦囊 - FastAPI】如何啟動多個Workers」。 當我們試著設計帶入模組化時… 我們在「【💊 Python的解憂錦囊 - FastAPI】使用 lifespan 來共享資料與管理生命週期
Thumbnail
2025/01/02
要如何使用unicorn啟動多個FastAPI服務, 歡迎參考我們的「【💊 Python的解憂錦囊 - FastAPI】如何啟動多個Workers」。 當我們試著設計帶入模組化時… 我們在「【💊 Python的解憂錦囊 - FastAPI】使用 lifespan 來共享資料與管理生命週期
Thumbnail
看更多
你可能也想看
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
在 Python 中,print( ) 函數用於將結果輸出到螢幕上。當你嘗試將不同資料型別(例如字串和數字)混合在一起輸出時,print( )函數無法直接處理這些不同型別的資料,因此你需要先將它們轉換為相同的資料型別。通常,這意味著需要將數字轉換為字串型別,以便與其他字串一同輸出。 雖然我們也可以
Thumbnail
在 Python 中,print( ) 函數用於將結果輸出到螢幕上。當你嘗試將不同資料型別(例如字串和數字)混合在一起輸出時,print( )函數無法直接處理這些不同型別的資料,因此你需要先將它們轉換為相同的資料型別。通常,這意味著需要將數字轉換為字串型別,以便與其他字串一同輸出。 雖然我們也可以
Thumbnail
我們在學習kafka的過程中最不習慣的就是不管什麼樣的資料, 在kafka的傳輸過程都會是binary的資料格式, 因此我們在撰寫程式的過程中並不是那麼的直觀, 必須將資料從float、int…資料型態轉型成binary才能順利傳送, 那麼基於這樣的前提之下, python這套程式語言可以怎麼做
Thumbnail
我們在學習kafka的過程中最不習慣的就是不管什麼樣的資料, 在kafka的傳輸過程都會是binary的資料格式, 因此我們在撰寫程式的過程中並不是那麼的直觀, 必須將資料從float、int…資料型態轉型成binary才能順利傳送, 那麼基於這樣的前提之下, python這套程式語言可以怎麼做
Thumbnail
情境描述 我們在「🔒 阿Han的軟體心法實戰營 - kafka」有關於kafka的教學文章, 那麼在開發過程中我們遇到了 👻 詭異事件, 那就是我們嘗試在做一個檔案串流時, 發現Producer明明傳送了大約16MB檔案大小的封包到kafka, 每一包約(1024 * 1024 ) bytes
Thumbnail
情境描述 我們在「🔒 阿Han的軟體心法實戰營 - kafka」有關於kafka的教學文章, 那麼在開發過程中我們遇到了 👻 詭異事件, 那就是我們嘗試在做一個檔案串流時, 發現Producer明明傳送了大約16MB檔案大小的封包到kafka, 每一包約(1024 * 1024 ) bytes
Thumbnail
為什麼會有Schema Registry的出現? 因為Kafka的零拷貝原則, 也就是kafka本身並不會去碰觸到訊息也不進行資料驗證, 而是bypass的傳送, 預設都以位元組來傳輸資料會比較有效率, 但位元組誰看得懂啊...。 加上Kafka的特性是生產者與消費者並不能直接溝通, 因
Thumbnail
為什麼會有Schema Registry的出現? 因為Kafka的零拷貝原則, 也就是kafka本身並不會去碰觸到訊息也不進行資料驗證, 而是bypass的傳送, 預設都以位元組來傳輸資料會比較有效率, 但位元組誰看得懂啊...。 加上Kafka的特性是生產者與消費者並不能直接溝通, 因
Thumbnail
更快、更短、更即時是串流傳輸必要的元素, 而我們常常在使用Python請求API時都是等待式回應, 也就是一個請求過去之後, 待對方處理完畢後再行回應, 但假設需要下載的檔案、內容非常大時, 是不是使用者只能傻傻的等待整個傳輸結束後才能顯示? 這樣的使用者體驗也實在太糟糕了, 對於使用者來說除了完全
Thumbnail
更快、更短、更即時是串流傳輸必要的元素, 而我們常常在使用Python請求API時都是等待式回應, 也就是一個請求過去之後, 待對方處理完畢後再行回應, 但假設需要下載的檔案、內容非常大時, 是不是使用者只能傻傻的等待整個傳輸結束後才能顯示? 這樣的使用者體驗也實在太糟糕了, 對於使用者來說除了完全
Thumbnail
我們在「【🎓 Python的深度問答集】torchaudio 對部分段落進行音訊解碼」有分享到如何對一包包的封包進行音訊解碼, 但隨著音檔越大, 最終解碼的速度會越來越慢, 而這並非串流的本意, 串流應該就像水管一樣, 收到多少資料就運算多少量, 並不會隨著累積的容量越大而導致效能下降。 但實際
Thumbnail
我們在「【🎓 Python的深度問答集】torchaudio 對部分段落進行音訊解碼」有分享到如何對一包包的封包進行音訊解碼, 但隨著音檔越大, 最終解碼的速度會越來越慢, 而這並非串流的本意, 串流應該就像水管一樣, 收到多少資料就運算多少量, 並不會隨著累積的容量越大而導致效能下降。 但實際
Thumbnail
Kafka是一個先進的分佈式流處理平臺,具有高吞吐量、可擴展性、容錯性和低延遲特性,提供瞭解耦、非同步和削峰特點。本文介紹了Kafka的通訊模式、適合的應用場景和未來發展趨勢,旨在幫助使用者更好地理解和應用Kafka。
Thumbnail
Kafka是一個先進的分佈式流處理平臺,具有高吞吐量、可擴展性、容錯性和低延遲特性,提供瞭解耦、非同步和削峰特點。本文介紹了Kafka的通訊模式、適合的應用場景和未來發展趨勢,旨在幫助使用者更好地理解和應用Kafka。
Thumbnail
當我們在撰寫一套系統的時候, 總是會提供一個介面讓使用者來觸發功能模組並回傳使用者所需的請求, 而傳統的安裝包模式總是太侷限, 需要個別主機獨立安裝, 相當繁瑣, 但隨著時代的演進與互聯網的崛起, 大部分的工作都可以藉由網頁端、裝置端來觸發, 而伺服端則是負責接收指令、運算與回傳結果, 雲端
Thumbnail
當我們在撰寫一套系統的時候, 總是會提供一個介面讓使用者來觸發功能模組並回傳使用者所需的請求, 而傳統的安裝包模式總是太侷限, 需要個別主機獨立安裝, 相當繁瑣, 但隨著時代的演進與互聯網的崛起, 大部分的工作都可以藉由網頁端、裝置端來觸發, 而伺服端則是負責接收指令、運算與回傳結果, 雲端
Thumbnail
f字符串(f-string)在Python 3.6版本引入了新特性,可以更方便地格式化字符串。本文介紹了f-string的基本使用方法,以及表達式、運算符、格式化控制、字典和列表的應用,以及調用方法和函數等。f-string提供了一種更靈活的方式,使你能夠控制字符串的外觀,以滿足不同情況下的需求。
Thumbnail
f字符串(f-string)在Python 3.6版本引入了新特性,可以更方便地格式化字符串。本文介紹了f-string的基本使用方法,以及表達式、運算符、格式化控制、字典和列表的應用,以及調用方法和函數等。f-string提供了一種更靈活的方式,使你能夠控制字符串的外觀,以滿足不同情況下的需求。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News