機器學習在蛋白質結構預測中的作用:AlphaFold 案例

更新於 發佈於 閱讀時間約 3 分鐘

**機器學習在蛋白質結構預測中的作用:AlphaFold 案例**


在藥物開發過程中,了解蛋白質的結構至關重要,因為蛋白質的形狀決定了它如何與其他分子互動。傳統方法需要耗費大量時間和資源,通過實驗方式解析蛋白質結構。AlphaFold 作為一款深度學習 AI 算法,突破了這一瓶頸。

raw-image


**AlphaFold 的創新點**:

1. **快速精準預測**:AlphaFold 可以在數小時內準確預測蛋白質的三維結構,相較於傳統的實驗方法大幅加速。

raw-image


2. **資料訓練及應用**:AlphaFold 使用大量已知蛋白質結構數據進行訓練,使其能夠推測未知蛋白質的結構。這項技術通過分析氨基酸序列和蛋白質折疊模式,大大提升預測準確性。


**案例應用**:

- **新冠病毒應對**:AlphaFold 技術在 COVID-19 期間被用來快速解析病毒蛋白質結構,有助於疫苗和藥物的研發。

在應對 COVID-19 大流行期間,AlphaFold 技術發揮了重要作用,尤其在解析新冠病毒的蛋白質結構方面。AlphaFold 是一種基於深度學習的蛋白質結構預測模型,由 DeepMind 開發,用於預測蛋白質的 3D 結構。當 COVID-19 爆發後,AlphaFold 被迅速運用來解析新冠病毒的關鍵蛋白質,例如刺突蛋白,這種蛋白質是病毒入侵人體細胞的主要工具。

SARS-CoV-2的刺突蛋白三聚體糖化圖譜

SARS-CoV-2的刺突蛋白三聚體糖化圖譜


### 詳述與過程

1. **目標蛋白質選擇**:研究人員使用 AlphaFold 聚焦於新冠病毒的刺突蛋白結構,這是疫苗設計和藥物靶向的重要對象。快速獲得高精度的蛋白質模型,有助於理解病毒與宿主細胞的相互作用機制。

2. **模型預測**:AlphaFold 在短時間內預測了刺突蛋白的複雜結構。這些數據幫助科學家了解病毒如何附著和進入細胞,進而為疫苗開發提供了關鍵參考依據。


3. **研發應用**:基於這些結構數據,製藥公司和研究機構得以加速疫苗和抗病毒藥物的開發,像 mRNA 疫苗便利用了刺突蛋白的結構數據來設計對抗病毒的有效免疫反應。


AlphaFold 技術的應用大幅縮短了 COVID-19 疫苗和治療方案的研發時間,突顯了 AI 在應對全球公共衛生危機中的潛力。


- **抗生素研究**:在抗藥性細菌的對抗中,AlphaFold 被用來設計針對特定蛋白質的分子,幫助識別潛在的抗菌藥物。


這些例子顯示出 AlphaFold 在生物醫學中的廣泛應用前景,不僅加速了新藥發現過程,也促進了對複雜病理的深入理解,使精準醫療成為可能。

留言
avatar-img
留言分享你的想法!
avatar-img
Jauh Tom的啦滴賽
8會員
336內容數
無聊攪屎
Jauh Tom的啦滴賽的其他內容
2025/02/17
DeepSeek R1 的真實開發成本:260 億美元是誇大還是事實? 你知道嗎?有分析師說,DeepSeek R1 的開發成本高達 260 億美元!但官方卻表示,他們只花了 557 萬美元就訓練出媲美 GPT-4 的 AI 模型?!這中間的落差,真的是「魔法」還是「誤會」呢?今天,我們就來拆解
2025/02/17
DeepSeek R1 的真實開發成本:260 億美元是誇大還是事實? 你知道嗎?有分析師說,DeepSeek R1 的開發成本高達 260 億美元!但官方卻表示,他們只花了 557 萬美元就訓練出媲美 GPT-4 的 AI 模型?!這中間的落差,真的是「魔法」還是「誤會」呢?今天,我們就來拆解
2025/02/17
對 AI 產業的影響 AI 發展方向的改變:生成式 AI 開發的重心正從過去的「技術軍備競賽」轉向爭奪使用者流量的生態構建。DeepSeek等開源大模型的爆火,使業界意識到C端(消費者端)市場的認知拐點提前到來,迫使企業重新規劃戰略,將免費與開放作為新常態,以迅速擴大用戶基數。OpenAI 執行長
2025/02/17
對 AI 產業的影響 AI 發展方向的改變:生成式 AI 開發的重心正從過去的「技術軍備競賽」轉向爭奪使用者流量的生態構建。DeepSeek等開源大模型的爆火,使業界意識到C端(消費者端)市場的認知拐點提前到來,迫使企業重新規劃戰略,將免費與開放作為新常態,以迅速擴大用戶基數。OpenAI 執行長
2025/02/17
《DeepSeek 崛起:如何改變 AI 競局的中國新星》 [章節 1:DeepSeek 的誕生] 2025 年 1 月 27 日,全球 AI 界屏息以待,DeepSeek-R1 正式發佈!這不僅僅是又一款 AI 模型,而是一場顛覆性的革命。其高效能與超低成本讓科技巨頭措手不及,震撼全球。
2025/02/17
《DeepSeek 崛起:如何改變 AI 競局的中國新星》 [章節 1:DeepSeek 的誕生] 2025 年 1 月 27 日,全球 AI 界屏息以待,DeepSeek-R1 正式發佈!這不僅僅是又一款 AI 模型,而是一場顛覆性的革命。其高效能與超低成本讓科技巨頭措手不及,震撼全球。
看更多
你可能也想看
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
**機器學習在蛋白質結構預測中的作用:AlphaFold 案例** 在藥物開發過程中,了解蛋白質的結構至關重要,因為蛋白質的形狀決定了它如何與其他分子互動。傳統方法需要耗費大量時間和資源,通過實驗方式解析蛋白質結構。AlphaFold 作為一款深度學習 AI 算法,突破了這一瓶頸。 **
Thumbnail
**機器學習在蛋白質結構預測中的作用:AlphaFold 案例** 在藥物開發過程中,了解蛋白質的結構至關重要,因為蛋白質的形狀決定了它如何與其他分子互動。傳統方法需要耗費大量時間和資源,通過實驗方式解析蛋白質結構。AlphaFold 作為一款深度學習 AI 算法,突破了這一瓶頸。 **
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 82 到 AI說書 - 從0開始 - 85 的說明,有一個很重要的結論:最適合您的模型不一定是排行榜上最好的模型,您需要學習 NLP 評
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 從 AI說書 - 從0開始 - 82 到 AI說書 - 從0開始 - 85 的說明,有一個很重要的結論:最適合您的模型不一定是排行榜上最好的模型,您需要學習 NLP 評
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 77 ,我們在給定句子 「 Transformers possess surprising emerging features 」的情
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 77 ,我們在給定句子 「 Transformers possess surprising emerging features 」的情
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 76 ,我們在給定句子 「 Transformers possess surprising emerging features 」的情
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 76 ,我們在給定句子 「 Transformers possess surprising emerging features 」的情
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 75 ,我們在給定句子 「 Transformers possess surprising emerging features 」的情
Thumbnail
我想要一天分享一點「LLM從底層堆疊的技術」,並且每篇文章長度控制在三分鐘以內,讓大家不會壓力太大,但是又能夠每天成長一點。 回顧 AI說書 - 從0開始 - 75 ,我們在給定句子 「 Transformers possess surprising emerging features 」的情
Thumbnail
大型語言模型(LLM)是基於深度學習的自然語言處理模型,而多模態模型(LMM)能處理多種資料型態。這些模型將對未來帶來重大改變。LLM 專注於理解和生成自然語言,LMM 能夠處理跨模態的內容,並整合多種資料的能力,有望成為未來趨勢。
Thumbnail
大型語言模型(LLM)是基於深度學習的自然語言處理模型,而多模態模型(LMM)能處理多種資料型態。這些模型將對未來帶來重大改變。LLM 專注於理解和生成自然語言,LMM 能夠處理跨模態的內容,並整合多種資料的能力,有望成為未來趨勢。
Thumbnail
這份研究分享了使用AI進行醫療研究的流程,介紹了三角纖維軟骨複合體(TFCC)的定位、重要性,以及如何應用MRI和AI協助進行影像判讀進而降低患者痛楚。研究使用兩種卷積神經網絡進行深度學習模型的設計與訓練以預測TFCC損傷的機率。最後得出結論MRNet 框架較能夠檢測TFCC損傷並協助醫師準確診斷。
Thumbnail
這份研究分享了使用AI進行醫療研究的流程,介紹了三角纖維軟骨複合體(TFCC)的定位、重要性,以及如何應用MRI和AI協助進行影像判讀進而降低患者痛楚。研究使用兩種卷積神經網絡進行深度學習模型的設計與訓練以預測TFCC損傷的機率。最後得出結論MRNet 框架較能夠檢測TFCC損傷並協助醫師準確診斷。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News