AI 模型的進化|從 大型語言模型LLM 到 多模態模型LMM

更新於 發佈於 閱讀時間約 1 分鐘

隨著 ChatGPT 和 Midjourney受到大眾的關注,最近與 AI 相關的名詞變成了 buzzword,前陣子常常看到文章討論深度學習Deep Learning、生成式AI Generative AI,到近期對大型語言模型 LLM、多模態模型 LMM 的討論,接下來將深入討論這兩個模型究竟是什麼?對未來會帶來什麼改變?


  • 大型語言模型(Large Language Models, LLM)
    基於深度學習技術的自然語言處理(NLP)模型,模型用於理解、生成、翻譯、總結...等等處理文字語言的任務。這些模型通常訓練於龐大的文本數據集上,以學習語言的結構、語法、語義等層面的知識。目前大型語言模型在日常生活中的應用十分廣泛,如聊天機器人、內容總結、文章改寫或文法修改都是大型語言模型常見得使用場景。
  • 多模態模型(Large Multimodal Models, LMM)
    「多模態」指的是多種資料型態,模型能夠處理並整合來自不同資料型態(例如文字、圖像、聲音等)的資訊,用來理解和生成跨模態的內容。多模態模型能夠整合多種數據的能力,幫助其應用在更多元複雜的決策場景,能夠推動醫學、自動駕駛...等等領域的進步。例如醫生結合病歷記錄 (文字)+心跳血壓(數字)+掃描圖像(圖片) 多種數據診斷病情,這種複雜的決策場景就很適合使用多模態模型作為輔助。


大型語言模型專注於深入理解和生成自然語言,而多模態模型接受輸入多種資料型態,並致力於跨模態之間的資訊整合和互動。我預測未來將會是多模態模型的天下,如同 ChatGPT 4 不只支援能夠用文字對話,也能夠製作圖片與上傳 Excel 數據檔案製作圖表,支援多種資料型態的多模態模型勢必成為趨勢!


avatar-img
5會員
17內容數
AI x Data Science 探討 AI 大小事
留言0
查看全部
avatar-img
發表第一個留言支持創作者!
Everything ✨ 的其他內容
Samsung 三星發表第一款 AI 手機 S24 Ultra,介紹了多項 AI 功能,包括 Circle to Search、Live Translate、AI editing、Note Assist 及 Chat Assist。未來AI手機將會越來越普及。
2024 年 2 月,OpenAI 推出了 Sora 文字生成影片模型,該模型根據用戶輸入的文字描述生成逼真的影片,並且能夠控制影片的細節,例如人物、場景、動作、表情等。Sora 的出現無疑為影視創作領域帶來了革命性的變化。
Samsung 三星發表第一款 AI 手機 S24 Ultra,介紹了多項 AI 功能,包括 Circle to Search、Live Translate、AI editing、Note Assist 及 Chat Assist。未來AI手機將會越來越普及。
2024 年 2 月,OpenAI 推出了 Sora 文字生成影片模型,該模型根據用戶輸入的文字描述生成逼真的影片,並且能夠控制影片的細節,例如人物、場景、動作、表情等。Sora 的出現無疑為影視創作領域帶來了革命性的變化。
你可能也想看
Google News 追蹤
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
在當今快速變化的數位時代,企業面臨著前所未有的數據處理需求。為了應對這些挑戰,企業紛紛建立自己的大型語言模型(LLM),利用大量數據進行訓練,讓模型能夠理解並生成自然語言,從而實現人機協作,優化業務流程並提升客戶體驗。
Thumbnail
在AI時代中,GPT技術正在改變我們的生活。然而,SLM(小型語言模型)也開始受到關注,具有更高的效率、更低的資源消耗和更快的響應速度。這篇文章將討論LLM和SLM的比較、SLM的應用場景以及未來的發展趨勢。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
大語言模型是一種特殊的神經網路,設計來理解,生成與回應人類的文本。 大語言模型是使用大量文本數據訓練的深度神經網路,其訓練使用的文本數據甚至包括了整個網路公開的文本。 大語言模型的「大」,體現於模型的參數個數以及其使用的訓練數據集。如此大的模型可以有百億甚至千億的參數。這些參數都是神經網
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型 (LLM) 在最近幾年取得了重大進展,並引起了人們對生成式AI將如何影響工作方式的廣泛重視。雖然 LLM 具有強大的文本生成、翻譯和理解能力,但它們對工作的影響仍然是一個複雜且充滿爭議的話題。 本文摘要自MIT 史隆管理評論,分析LLM 對工作帶來的影響。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。
Thumbnail
大語言模型(LLMs)對於任何對人工智能和自然語言處理感興趣的人來說都是一個令人興奮的領域。 這類模型,如GPT-4, 透過其龐大的數據集和複雜的參數設置, 提供了前所未有的語言理解和生成能力。 那麼,究竟是什麼讓這些模型「大」得如此不同呢?
Thumbnail
對於熱衷於語言科技的你, 大語言模型(LLMs)在自然語言處理(NLP)領域的發展無疑是一個革命性的進展。 從傳統的規則系統到基於深度學習的方法, LLMs展現了在理解、生成和翻譯人類語言方面的巨大突破。 這不僅是技術上的飛躍, 更是開啟了新的應用和可能性。 下面將介紹這一變革帶來的三大
Thumbnail
隨著理財資訊的普及,越來越多台灣人不再將資產侷限於台股,而是將視野拓展到國際市場。特別是美國市場,其豐富的理財選擇,讓不少人開始思考將資金配置於海外市場的可能性。 然而,要參與美國市場並不只是盲目跟隨標的這麼簡單,而是需要策略和方式,尤其對新手而言,除了選股以外還會遇到語言、開戶流程、Ap
Thumbnail
嘿,大家新年快樂~ 新年大家都在做什麼呢? 跨年夜的我趕工製作某個外包設計案,在工作告一段落時趕上倒數。 然後和兩個小孩過了一個忙亂的元旦。在深夜時刻,看到朋友傳來的解籤網站,興致勃勃熬夜體驗了一下,覺得非常好玩,或許有人玩過了,但還是想寫上來分享紀錄一下~
Thumbnail
在當今快速變化的數位時代,企業面臨著前所未有的數據處理需求。為了應對這些挑戰,企業紛紛建立自己的大型語言模型(LLM),利用大量數據進行訓練,讓模型能夠理解並生成自然語言,從而實現人機協作,優化業務流程並提升客戶體驗。
Thumbnail
在AI時代中,GPT技術正在改變我們的生活。然而,SLM(小型語言模型)也開始受到關注,具有更高的效率、更低的資源消耗和更快的響應速度。這篇文章將討論LLM和SLM的比較、SLM的應用場景以及未來的發展趨勢。
大語言模型能夠生成文本,因此被認為是生成式人工智慧的一種形式。 人工智慧的學科任務,是製作機器,使其能執行需要人類智慧才能執行的任務,例如理解語言,便是模式,做出決策。 除了大語言模型,人工智慧也包含了深度學習以及機器學習。 機器學習的學科任務,是透過演算法來實踐AI。 特別
大語言模型是一種特殊的神經網路,設計來理解,生成與回應人類的文本。 大語言模型是使用大量文本數據訓練的深度神經網路,其訓練使用的文本數據甚至包括了整個網路公開的文本。 大語言模型的「大」,體現於模型的參數個數以及其使用的訓練數據集。如此大的模型可以有百億甚至千億的參數。這些參數都是神經網
大語言模型,例如OpenAI提供的ChatGPT,是過去幾年發展的深度神經網路模型,開啟自然語言處理的新紀元。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」,然而,它們並非真正理解語言。除了在上篇介紹的技巧可以協助我們在使用 LLM 時給予指示之外,今天我們會介紹使用 LLM 的框架。
Thumbnail
大型語言模型 (LLM) 在最近幾年取得了重大進展,並引起了人們對生成式AI將如何影響工作方式的廣泛重視。雖然 LLM 具有強大的文本生成、翻譯和理解能力,但它們對工作的影響仍然是一個複雜且充滿爭議的話題。 本文摘要自MIT 史隆管理評論,分析LLM 對工作帶來的影響。
Thumbnail
大型語言模型(Large Language Model,LLM)是一項人工智慧技術,其目的在於理解和生成人類語言,可將其想像成一種高階的「文字預測機器」。 Prompt Pattern 是給予LLM的指示,並確保生成的輸出擁有特定的品質(和數量)。
Thumbnail
大語言模型(LLMs)對於任何對人工智能和自然語言處理感興趣的人來說都是一個令人興奮的領域。 這類模型,如GPT-4, 透過其龐大的數據集和複雜的參數設置, 提供了前所未有的語言理解和生成能力。 那麼,究竟是什麼讓這些模型「大」得如此不同呢?
Thumbnail
對於熱衷於語言科技的你, 大語言模型(LLMs)在自然語言處理(NLP)領域的發展無疑是一個革命性的進展。 從傳統的規則系統到基於深度學習的方法, LLMs展現了在理解、生成和翻譯人類語言方面的巨大突破。 這不僅是技術上的飛躍, 更是開啟了新的應用和可能性。 下面將介紹這一變革帶來的三大