【語音合成技術 - GPT-SoVITS】解析API版本

更新於 發佈於 閱讀時間約 1 分鐘

我們在「【語音合成技術 - GPT-SoVITS】如何架設API伺服器」分享如何架設API V3版本的TTS服務, 但發音的部份似乎只有早期的API版本才使用到g2pw這類的技術, 因此我們可能會需要將API退回舊版, 在這裡我們也整理了早期版本api與api_v2的一些差異, 期望幫助到正在面臨選擇的朋友們!

raw-image



差異最大的部份是api_v2.py改善了api.py的複雜配置, 每個入口都留有配置的影子, 這對於初次接觸的朋友來說會比較難以理解, 接下來我們將針對兩個版本的API進行細部解析。


api.py

raw-image

大致上比較複雜的地方會在「get_phones_and_bert」, 這裡多了一些文字清洗、字音匹配、bert的流程, 對於要細部調整發音的朋友來說或許會是一個重要的資訊, 也歡迎一起分享對此原始碼的見解。


api_v2.py

raw-image

與api.py差別在於將文字處理的部份抽象成TextPreprocessor, 架構上更加簡潔易讀, 對於二次開發的需求來說也較容易入門。


結語

當我們需要對於一個開源專案進行一些功能上的修改時, 第一步就是要先解析專案組成的架構, 並找出核心所在, 最好的方法就是繪製成圖的方式, 讓我們更快的進入狀況, 以利我們能夠順利的修改。

avatar-img
125會員
274內容數
哈囉,我是阿Han,是一位 👩‍💻 軟體研發工程師,喜歡閱讀、學習、撰寫文章及教學,擅長以圖代文,化繁為簡,除了幫助自己釐清思路之外,也希望藉由圖解的方式幫助大家共同學習,甚至手把手帶您設計出高品質的軟體產品。
留言
avatar-img
留言分享你的想法!

































































阿Han的沙龍 的其他內容
精彩回顧 【語音合成技術 - GPT-SoVITS】讓機器說人話的語音生成服務 【語音合成技術 - GPT-SoVITS】如何架設API伺服器 以上是我們過往分享過關於 https://github.com/RVC-Boss/GPT-SoVITS 的分享文章, 這次我們要來試試fine
建議閱讀 在開始之前, 建議您先閱讀以下篇章, 相信當您開始大量使用Airflow作業時, 難免會需要儲存空間的方案, 像是今天的主角minio就是其中之一, 而我們會建議您先閱讀相關篇章也是有道理的, 因為我們推薦的方法是盡量以容器化為導向來進行Airflow自動化流程的作業, 避免干擾到主機的
我們在「【語音合成技術 - GPT-SoVITS】讓機器說人話的語音生成服務」介紹過如何透過docker啟動webui版的TTS服務器, 但假設我們想自行開發一個TTS服務, 並整合到系統裡面, 通常會需要一個傳輸介面來溝通, 而API就是最簡易的溝通方式, 正巧 ****GPT-SoVITS **
今天要分享的主題是關於「語音合成技術 - TTS」一款好用的開源軟體, 名為「GPT-SoVITS」, 它具有以下的特點: 零樣本(Zero Shot): 只需要五秒鐘的語音樣本就能即時文字轉語音。 少量樣本(Few Shot): 只要1分鐘樣本就能提高語音相似度及真實感。 跨語言: 日語
當我們架設好Docker環境, 並撰寫一個DAG為Docker Operator的關卡時, 執行後竟然出現以下錯誤: raise AirflowException("Failed to establish connection to any given Docker hosts.") air
當我們在訓練各種模型時, 難免會有許多實驗性的參數、產出的模型、不同的資料來源, 隨著版本迭代越來越多, 過了一段時間回頭看之後卻發現當初最好的某一個實驗參數到底是啥啊? 模型去了哪裡? 用的數據集是哪些? 我想上述這些問題都是模型訓練的過程難免會遇到的問題, 除非我們有一套管理的SOP, 比
精彩回顧 【語音合成技術 - GPT-SoVITS】讓機器說人話的語音生成服務 【語音合成技術 - GPT-SoVITS】如何架設API伺服器 以上是我們過往分享過關於 https://github.com/RVC-Boss/GPT-SoVITS 的分享文章, 這次我們要來試試fine
建議閱讀 在開始之前, 建議您先閱讀以下篇章, 相信當您開始大量使用Airflow作業時, 難免會需要儲存空間的方案, 像是今天的主角minio就是其中之一, 而我們會建議您先閱讀相關篇章也是有道理的, 因為我們推薦的方法是盡量以容器化為導向來進行Airflow自動化流程的作業, 避免干擾到主機的
我們在「【語音合成技術 - GPT-SoVITS】讓機器說人話的語音生成服務」介紹過如何透過docker啟動webui版的TTS服務器, 但假設我們想自行開發一個TTS服務, 並整合到系統裡面, 通常會需要一個傳輸介面來溝通, 而API就是最簡易的溝通方式, 正巧 ****GPT-SoVITS **
今天要分享的主題是關於「語音合成技術 - TTS」一款好用的開源軟體, 名為「GPT-SoVITS」, 它具有以下的特點: 零樣本(Zero Shot): 只需要五秒鐘的語音樣本就能即時文字轉語音。 少量樣本(Few Shot): 只要1分鐘樣本就能提高語音相似度及真實感。 跨語言: 日語
當我們架設好Docker環境, 並撰寫一個DAG為Docker Operator的關卡時, 執行後竟然出現以下錯誤: raise AirflowException("Failed to establish connection to any given Docker hosts.") air
當我們在訓練各種模型時, 難免會有許多實驗性的參數、產出的模型、不同的資料來源, 隨著版本迭代越來越多, 過了一段時間回頭看之後卻發現當初最好的某一個實驗參數到底是啥啊? 模型去了哪裡? 用的數據集是哪些? 我想上述這些問題都是模型訓練的過程難免會遇到的問題, 除非我們有一套管理的SOP, 比
你可能也想看
Google News 追蹤
Thumbnail
川普2.0的關稅與貿易政策,表面看似反覆無常,實則圍繞著幾個核心目標:扭轉貿易不公、推動美國再工業化、確保戰略自主,以及貫徹「美國優先」原則。本文深入剖析其背後的一致性邏輯、長期戰略意義,以及對全球產業鏈的影響,並探討不同產業的贏家與輸家。
Thumbnail
AI 生產力工具是一款免費、開源的應用程式,適用於 Windows 系統,整合了 ChatGPT 聊天和多個 AI 圖片/影片調整功能。提供完整、輕量兩種版本,差別在於輕量版沒有 ChatGPT 聊天。
前陣子自己手刻了ChatGPT,並發了一系列文章: 使用Meta釋出的模型,實作Chat GPT - Part 0 使用Meta釋出的模型,實作Chat GPT - Part 1 使用Meta釋出的模型,實作Chat GPT - Part 2 使用Meta釋出的模型,實作Chat GPT -
Thumbnail
今天我要跟大家聊聊 GPT-SoVITS 的用途及其功能。 這個開源的聲音克隆專案,融合了業內頂尖的語音合成工具——GPT (Generative Pre-trained Transformer)模型,和SoVITS(Speech-to-Video Voice Transformation Sys
到目前為止,我們已經完成RAG技術的實作,在上一篇文章使用Meta釋出的模型,實作Chat GPT - Part 5中,可以看到加入RAG之後,可以讓我的大型語言模型回答更為精確。 現在我們要把它用一個畫面做呈現,而不是以程式碼來給大家看,就類似Chat GPT這樣,背後有複雜的程式運行,但是眾人
延續使用Meta釋出的模型,實作Chat GPT - Part 4,我們現在遇到一個問題:語言模型回答的資訊不是我想要的。 於是我參照ChatGPT回答不是你要的怎麼辦?,想使用低成本的技術:RAG,來改善這問題。 以下開始實作,首先引入一個重量級工具包,它叫做LangChain,這是做語言模型
Thumbnail
從第一次使用到現在,使用GPT近一年的經驗分享。介紹在使用GPT時的困難、挑戰及學習到的技巧,以及如何讓GPT更好地理解所需內容。
Thumbnail
合成聲音技術的未來充滿希望,也存在挑戰。OpenAI呼籲社會各界一起加強對這一新興技術的認識,並共同探索如何有效地利用這項技術,同時保護公眾免受潛在的負面影響。
Thumbnail
本文介紹如何設置OpenAI API密鑰並使用Whisper API轉寫音訊檔案。文章詳細說明了轉寫單個音訊檔案,以及將長音訊分割並轉寫的過程。透過範例演示,讀者可以學習如何將音訊轉寫為文字,提高工作效率。
Thumbnail
本篇筆記了如何使用Google Colab和OpenAI的Whisper Large V3進行免費且開源的語音辨識。涵蓋從基礎設定到實際運用的步驟,適合初學者和技術愛好者輕鬆學習語音辨識技術。
Thumbnail
這篇文章需付費觀看。你可以獲得: 👉 完整建立一個 GPT 👉 建立公開版 GPT 要注意的事 👉 微調的 Prompts 讓你的 GPT 不被逆向工程 👉 如何使用進階版 Actions ( 由簡單到進階三種方式,讓你解鎖行動超能力 ) 👉 一個可以讓你問有關建立 GPTs
Thumbnail
川普2.0的關稅與貿易政策,表面看似反覆無常,實則圍繞著幾個核心目標:扭轉貿易不公、推動美國再工業化、確保戰略自主,以及貫徹「美國優先」原則。本文深入剖析其背後的一致性邏輯、長期戰略意義,以及對全球產業鏈的影響,並探討不同產業的贏家與輸家。
Thumbnail
AI 生產力工具是一款免費、開源的應用程式,適用於 Windows 系統,整合了 ChatGPT 聊天和多個 AI 圖片/影片調整功能。提供完整、輕量兩種版本,差別在於輕量版沒有 ChatGPT 聊天。
前陣子自己手刻了ChatGPT,並發了一系列文章: 使用Meta釋出的模型,實作Chat GPT - Part 0 使用Meta釋出的模型,實作Chat GPT - Part 1 使用Meta釋出的模型,實作Chat GPT - Part 2 使用Meta釋出的模型,實作Chat GPT -
Thumbnail
今天我要跟大家聊聊 GPT-SoVITS 的用途及其功能。 這個開源的聲音克隆專案,融合了業內頂尖的語音合成工具——GPT (Generative Pre-trained Transformer)模型,和SoVITS(Speech-to-Video Voice Transformation Sys
到目前為止,我們已經完成RAG技術的實作,在上一篇文章使用Meta釋出的模型,實作Chat GPT - Part 5中,可以看到加入RAG之後,可以讓我的大型語言模型回答更為精確。 現在我們要把它用一個畫面做呈現,而不是以程式碼來給大家看,就類似Chat GPT這樣,背後有複雜的程式運行,但是眾人
延續使用Meta釋出的模型,實作Chat GPT - Part 4,我們現在遇到一個問題:語言模型回答的資訊不是我想要的。 於是我參照ChatGPT回答不是你要的怎麼辦?,想使用低成本的技術:RAG,來改善這問題。 以下開始實作,首先引入一個重量級工具包,它叫做LangChain,這是做語言模型
Thumbnail
從第一次使用到現在,使用GPT近一年的經驗分享。介紹在使用GPT時的困難、挑戰及學習到的技巧,以及如何讓GPT更好地理解所需內容。
Thumbnail
合成聲音技術的未來充滿希望,也存在挑戰。OpenAI呼籲社會各界一起加強對這一新興技術的認識,並共同探索如何有效地利用這項技術,同時保護公眾免受潛在的負面影響。
Thumbnail
本文介紹如何設置OpenAI API密鑰並使用Whisper API轉寫音訊檔案。文章詳細說明了轉寫單個音訊檔案,以及將長音訊分割並轉寫的過程。透過範例演示,讀者可以學習如何將音訊轉寫為文字,提高工作效率。
Thumbnail
本篇筆記了如何使用Google Colab和OpenAI的Whisper Large V3進行免費且開源的語音辨識。涵蓋從基礎設定到實際運用的步驟,適合初學者和技術愛好者輕鬆學習語音辨識技術。
Thumbnail
這篇文章需付費觀看。你可以獲得: 👉 完整建立一個 GPT 👉 建立公開版 GPT 要注意的事 👉 微調的 Prompts 讓你的 GPT 不被逆向工程 👉 如何使用進階版 Actions ( 由簡單到進階三種方式,讓你解鎖行動超能力 ) 👉 一個可以讓你問有關建立 GPTs