高低分組簡介和上機操作

高低分組簡介和上機操作

更新於 發佈於 閱讀時間約 1 分鐘

高低分組,顧名思義,就是把考生的成績分成兩組:表現最好的一組和表現最差的一組。依據Kelley(1939),通常前27%的考生是高分組,後27%的考生是低分組。如果高分組和低分組的表現差異很大,那麼說明這題題目鑑別度高,能有效區分不同程度的考生。反之,如果兩組表現差異不大,那麼說明這題題目鑑別度低,可能需要調整一下。

raw-image


raw-image


SPSS上機操作:

  1. 在次數分配表>統計量,把總分的百分之27和73找出來。
  2. 報表結果顯示,百分之27是1.43,73是3.57。
  3. 轉換>重新編碼成不同變數,將總分拉出來,然後選擇舊值和新值
  4. 點從低到值,輸入1.43(百分之27),然後新增;點從值到最高,輸入3.57(百分之73),新增,最後確定。就會出現1為高分組,0為低分組的變項。


raw-image

Kelley, T. L. (1939). The selection of upper and lower groups for the validation of test items. Journal of Educational Psychology, 30(1), 17–24. https://doi.org/10.1037/h0057123

avatar-img
心理博士的筆記本
239會員
134內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。此外,我還會分享一些學術和科技新知,幫助您在學術之路上走得更順利。
留言
avatar-img
留言分享你的想法!
心理博士的筆記本 的其他內容
以前,若多因子的變異數分析的變異數同異質性假設未通過,那麼變異數分析的F值就會有所誤差,也沒有適當的無母數統計可以替代。最近,有學者提倡Welch-James統計量,這種方法相較於傳統的方差分析更具有穩健性,並且同樣可以檢驗因子主效應和交互作用。通過一些實際案例,我們展示瞭如何在R語言中使用本方法。
Groupmean centering是一種常用的資料預處理方法,特別是多層次分析,若要使用Rights & Sterba (2019)(2019) 發展出R2 (R&S),要對需要將層次1的變項和交互作用都 Groupmean centering。本文介紹使用R和SPSS操作方法
當共變數分析(ANCOVA)違反回歸斜率的同質性假設時,Johnson-Neyman 技術是實驗設計中 ANCOVA 的優秀的替代方法。凃金堂老師寫的實驗研究法與共變數分析有提供完善的Johnson-Neyman程式和講解。本文就是分享個人如何透過實際案例,使用Johnson-Neyman法進行分析
以前,若多因子的變異數分析的變異數同異質性假設未通過,那麼變異數分析的F值就會有所誤差,也沒有適當的無母數統計可以替代。最近,有學者提倡Welch-James統計量,這種方法相較於傳統的方差分析更具有穩健性,並且同樣可以檢驗因子主效應和交互作用。通過一些實際案例,我們展示瞭如何在R語言中使用本方法。
Groupmean centering是一種常用的資料預處理方法,特別是多層次分析,若要使用Rights & Sterba (2019)(2019) 發展出R2 (R&S),要對需要將層次1的變項和交互作用都 Groupmean centering。本文介紹使用R和SPSS操作方法
當共變數分析(ANCOVA)違反回歸斜率的同質性假設時,Johnson-Neyman 技術是實驗設計中 ANCOVA 的優秀的替代方法。凃金堂老師寫的實驗研究法與共變數分析有提供完善的Johnson-Neyman程式和講解。本文就是分享個人如何透過實際案例,使用Johnson-Neyman法進行分析