使用R和SPSS做Groupmean centering

更新於 發佈於 閱讀時間約 1 分鐘

Groupmean centering是一種常用的資料預處理方法,特別是多層次分析,若要使用Rights & Sterba (2019) 發展出R2 (R&S),要對需要將層次1的變項和交互作用都 Groupmean centering。本文介紹使用R和SPSS做Groupmean centering的操作步驟




使用R

我們想要將gpa_long檔案的time變項根據student分組進行Groupmean centering。就可以用robumeta語法

#下載和使用robumeta
if(!require('robumeta')) { install.packages('robumeta') library('robumeta')}
#對time變項進行Groupmean centering,將中心化後變項命名為time_cc
time_cc <- group.center(gpa_long$time, gpa_long$student)
#time_cc匯入gpa_long檔案中
gpa_long$time_cc = time_cc


使用SPSS

ODT_G是分組變項,ODG_T是要被中心化的變項,中心化後變項命名為ODT_C。操作如下,就會跑出一個中心化後的變項ODT_C

raw-image
ODT_G是分組變項,ODG_T是要被中心化的變項,中心化後變項命名為ODG_C

ODT_G是分組變項,ODG_T是要被中心化的變項,中心化後變項命名為ODG_C


您的研究遇到了統計分析的困難嗎?您需要專業的統計諮詢和代跑服務嗎?請點我看提供的服務

留言
avatar-img
留言分享你的想法!
avatar-img
教育心理博士的筆記本
254會員
145內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。此外,我還會分享一些學術和科技新知,幫助您在學術之路上走得更順利。
2024/11/28
以前,若多因子的變異數分析的變異數同異質性假設未通過,那麼變異數分析的F值就會有所誤差,也沒有適當的無母數統計可以替代。最近,有學者提倡Welch-James統計量,這種方法相較於傳統的方差分析更具有穩健性,並且同樣可以檢驗因子主效應和交互作用。通過一些實際案例,我們展示瞭如何在R語言中使用本方法。
Thumbnail
2024/11/28
以前,若多因子的變異數分析的變異數同異質性假設未通過,那麼變異數分析的F值就會有所誤差,也沒有適當的無母數統計可以替代。最近,有學者提倡Welch-James統計量,這種方法相較於傳統的方差分析更具有穩健性,並且同樣可以檢驗因子主效應和交互作用。通過一些實際案例,我們展示瞭如何在R語言中使用本方法。
Thumbnail
2024/05/01
高低分組,顧名思義,就是把考生的成績分成兩組:表現最好的一組和表現最差的一組。依據Kelley(1939),通常前27%的考生是高分組,後27%的考生是低分組。如果高分組和低分組的表現差異很大,那麼說明這題題目鑑別度高,能有效區分不同程度的考生。
Thumbnail
2024/05/01
高低分組,顧名思義,就是把考生的成績分成兩組:表現最好的一組和表現最差的一組。依據Kelley(1939),通常前27%的考生是高分組,後27%的考生是低分組。如果高分組和低分組的表現差異很大,那麼說明這題題目鑑別度高,能有效區分不同程度的考生。
Thumbnail
2023/08/27
當共變數分析(ANCOVA)違反回歸斜率的同質性假設時,Johnson-Neyman 技術是實驗設計中 ANCOVA 的優秀的替代方法。凃金堂老師寫的實驗研究法與共變數分析有提供完善的Johnson-Neyman程式和講解。本文就是分享個人如何透過實際案例,使用Johnson-Neyman法進行分析
Thumbnail
2023/08/27
當共變數分析(ANCOVA)違反回歸斜率的同質性假設時,Johnson-Neyman 技術是實驗設計中 ANCOVA 的優秀的替代方法。凃金堂老師寫的實驗研究法與共變數分析有提供完善的Johnson-Neyman程式和講解。本文就是分享個人如何透過實際案例,使用Johnson-Neyman法進行分析
Thumbnail
看更多
你可能也想看
Thumbnail
常常被朋友問「哪裡買的?」嗎?透過蝦皮分潤計畫,把日常購物的分享多加一個步驟,就能轉換成現金回饋。門檻低、申請簡單,特別適合學生與上班族,讓零碎時間也能創造小確幸。
Thumbnail
常常被朋友問「哪裡買的?」嗎?透過蝦皮分潤計畫,把日常購物的分享多加一個步驟,就能轉換成現金回饋。門檻低、申請簡單,特別適合學生與上班族,讓零碎時間也能創造小確幸。
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
嗨!歡迎來到 vocus vocus 方格子是台灣最大的內容創作與知識變現平台,並且計畫持續拓展東南亞等等國際市場。我們致力於打造讓創作者能夠自由發表、累積影響力並獲得實質收益的創作生態圈!「創作至上」是我們的核心價值,我們致力於透過平台功能與服務,賦予創作者更多的可能。 vocus 平台匯聚了
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
Thumbnail
在資料分析過程中,透過衡量變數之間的線性或非線性關係,能有效探索數據集,篩選出重要特徵,並進行預測建模。本文介紹瞭如何理解數據、使用相關矩陣找出變數關聯性,以及利用互資訊評估變數之間的依賴程度,幫助資料科學家在建模過程中選擇適當的變數,提升模型效果。
Thumbnail
在進行多層次線性模型(MLM)當中,有時候我們不只會加入層次1的預測變項。我們也會想加入層次2預測變項。本文將介紹加入層次2預測變項的各種模型,並解釋其公式和R語言操作方法。因為內容比較多,所以篇幅比較長。 多層次線性模型(MLM),截距是表示所有學校的平均值。斜率是指模型中自變量的係數,表
Thumbnail
在進行多層次線性模型(MLM)當中,有時候我們不只會加入層次1的預測變項。我們也會想加入層次2預測變項。本文將介紹加入層次2預測變項的各種模型,並解釋其公式和R語言操作方法。因為內容比較多,所以篇幅比較長。 多層次線性模型(MLM),截距是表示所有學校的平均值。斜率是指模型中自變量的係數,表
Thumbnail
高中數學主題練習—標準化計算
Thumbnail
高中數學主題練習—標準化計算
Thumbnail
有時候在其他檔案轉換成SPSS檔時,可能出現在一個變項內,以特定符號將不同數字分開的(如下圖,第三行4,7,8),這時無法用SPSS進行有效分析。本文將說明如何使用SPSS將特定符號分開的數字轉換成不同變項,光看文字可能太過抽象,請看圖文教學。
Thumbnail
有時候在其他檔案轉換成SPSS檔時,可能出現在一個變項內,以特定符號將不同數字分開的(如下圖,第三行4,7,8),這時無法用SPSS進行有效分析。本文將說明如何使用SPSS將特定符號分開的數字轉換成不同變項,光看文字可能太過抽象,請看圖文教學。
Thumbnail
本文介紹了如何使用資料樞紐分析的功能來整理所需的資料,並設定圖表的中文字型,最後提供了繪圖的程式碼範例。
Thumbnail
本文介紹了如何使用資料樞紐分析的功能來整理所需的資料,並設定圖表的中文字型,最後提供了繪圖的程式碼範例。
Thumbnail
在上一篇中,我們在模型探討隨機截距交叉延宕模式加入為預測或結果變量。而在Extension 2中,可以使用的分類變量進行Multiple group分析。這種方法常用在探討調節效果是否成立,本文將簡介其意義和語法。
Thumbnail
在上一篇中,我們在模型探討隨機截距交叉延宕模式加入為預測或結果變量。而在Extension 2中,可以使用的分類變量進行Multiple group分析。這種方法常用在探討調節效果是否成立,本文將簡介其意義和語法。
Thumbnail
本篇文章分享從製作數據分析報告到PPT簡報技巧,內容包括數據分析報告的構成要素、主體的清晰邏輯設定,以及製作精準PPT簡報的方法。提供從製作報告的過程到提升製作效率的建議,適合初入職場的數據分析新人們參考喔~
Thumbnail
本篇文章分享從製作數據分析報告到PPT簡報技巧,內容包括數據分析報告的構成要素、主體的清晰邏輯設定,以及製作精準PPT簡報的方法。提供從製作報告的過程到提升製作效率的建議,適合初入職場的數據分析新人們參考喔~
Thumbnail
如何計算某欄的平均數? 如何計算多個欄位的平均數? 如果想計算不同分組的平均數? 如何用Python計算某欄平均數 利用agg計算平均數 利用groupby建立分組,再用agg計算平均數
Thumbnail
如何計算某欄的平均數? 如何計算多個欄位的平均數? 如果想計算不同分組的平均數? 如何用Python計算某欄平均數 利用agg計算平均數 利用groupby建立分組,再用agg計算平均數
Thumbnail
Groupmean centering是一種常用的資料預處理方法,特別是多層次分析,若要使用Rights & Sterba (2019)(2019) 發展出R2 (R&S),要對需要將層次1的變項和交互作用都 Groupmean centering。本文介紹使用R和SPSS操作方法
Thumbnail
Groupmean centering是一種常用的資料預處理方法,特別是多層次分析,若要使用Rights & Sterba (2019)(2019) 發展出R2 (R&S),要對需要將層次1的變項和交互作用都 Groupmean centering。本文介紹使用R和SPSS操作方法
Thumbnail
今天來講:統計模擬研究的入門文章。(2023-08-23)
Thumbnail
今天來講:統計模擬研究的入門文章。(2023-08-23)
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News