salon cover

Caspar的沙龍

118會員數
31內容數

Caspar的沙龍介紹

精選內容

這是微積分科普系列:「從生活認識微積分」中的第一篇,在本文中將列舉數個生活例子,帶你逐一了解函數的概念,透過「長相」與「稱呼」,「商品」與「價格」、「原料」與「產品」帶你了解函數、定義域、值域的定義,並了解函數的數學標示方法,即使沒有學過函數概念的人也能讀懂。
Thumbnail
avatar-avatar
Joe Tseng
這樣總算明白了。初學者如我最大的困難大概是對符號的不理解。感謝作者已圖文帶入生活的說明,這是看到過最容易理解的了😄
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
Thumbnail
感謝貴文詳實的介紹,使人收穫良多。但個人有一疑問請教:在四、小結中提到“...將某一定值時的「導數」視為一個函數,找出把「每一個瞬間」對應到「瞬間變化率」的函數,這個過程就是「微分」。... ”。依個人對導(函)數的了解,如果某函數f之方程已知且可微,其圖上適用任一點之導函數f'只有一個,差別只在所選擇的某一定值以及根據此導函數f'之方程所得出之f'(x)不同。例如f函數方程:f(x) =x^2 + x,則其導函數方程為:f'(x) = 2x + 1,代入任何定義域中的x值都是根據f'(x) = 2x + 1的函數關係來得到其f'(x)值。但上文中所提“將某一定值時的「導數」視為一個函數”似乎易使人誤解導數與x之函數關係會隨x值變化,亦即不同x值會有它各自的導函數。故此建議能有其它的表述方式,如「一函數f存在唯一之導函數f',函數中定義域中的數值皆根據此f'之函數關係求得其對應之f'(x)值」。以上建議如有誤謬尚祈指教更正,不勝感激。
這是微積分科普系列文章的第三篇,本文分成兩個部分。第一部分:由於上文以極限的反思作結,告訴讀者透過實驗與推測,不能確定函數的極限,因此本文將以嚴格的數學定義,說明如何證明函數的極限,回答上文中的反思問題,了解定義後,未來再證明函數極限的加、減、乘、除;第二部分:將以生活對話向你解釋「無限大、無限小」
Thumbnail
avatar-avatar
Joe Tseng
最後的註解,開區間的解釋方便更直觀地理解以範圍定義所要的解(析度)。啊~當初老師說的慢慢又回來了👍

擁有者

大學時專攻生命科學與數學,對於科學教育富有熱誠,時常感嘆台灣的科學教育抹滅學生的興趣,期望藉由文章讓讀者了解科學的學習方法與精神。我也熱衷於研究親子教育、心理學、哲學、語文等,希望能在文章中提供讀者教育孩童的方法,並定期分享語言的學習文章,期望讓讀者們的生活更加充實。
追蹤最新動態, 和 118 位同樣興趣愛好的人一起交流