從生活認識微積分(一):什麼是「函數」?

閱讀時間約 5 分鐘
上圖為常見的三角函數,圖片來源:https://commons.wikimedia.org/wiki/File:Trigonometric_functions.svg,授權方式:CC 2.0
這是微積分科普系列:「從生活認識微積分」中的第一篇,在本文中將列舉數個生活例子,帶你逐一了解函數的概念,透過「長相」與「稱呼」,「商品」與「價格」、「原料」與「產品」帶你了解函數、定義域、值域的定義,並了解函數的數學標示方法,即使沒有學過函數概念的人也能讀懂。

一、「從生活認識微積分」科普系列前言:

  許多人常因耳聞「微積分」是一門困難的學科,所以在學習前就對「微積分」產生恐懼,最後因心生恐懼而遭到許多挫折,無法順利學習微積分。「微積分」確實是一門深奧的學問,但是微積分的基本精神卻可以從生活中體會到,因此不難理解。若我們願意逐步打好「微積分」的根基,再不斷學習更高階的微積分應用、定理,學好微積分並非是無法達成的任務。本系列文章將列舉數個跟生活相關的例子,讓讀者從情境當中思考微積分的基本精神、與微積分相關的數學概念,避免讀者在學習正式課題前,已經先失去學習熱誠,並用輕鬆的方式讓你了解許多數學的基本概念。本系列的所有文章,都會在文末附上文章難度,提供不同程度的讀者參考。

二、什麼是「函數」(Function)?

  在建立微積分的概念前,我們得先了解函數的定義。因為操作微積分的對象是「函數」。函數就是一種「一對一的對應法則」(註1),本文將在以下舉三個生活例子,讓讀者認識什麼是函數。
  當你看到一個熟人的長相時,腦中會先想起平常對他的稱呼,再進一步向他打招呼。這當中就有函數的觀念,因為「長相」與「稱呼」有唯一的對應關係。你看到某一個朋友的長相,不會想到兩種截然不同的稱呼,而是一個唯一的名字,若每個人的長相在腦海中都只對應到唯一的稱呼,我們便可以說「稱呼」是「長相」的函數。
  再另舉一個例子:在工廠中,每種調好的麵糊配方只能生產出一樣餅乾,我們便可以稱餅乾是麵糊的函數,因為將巧克力麵糊放入機器,只能產出巧克力餅乾;將奶油麵糊放入機器,只能產出奶油餅乾,我們都知道放入巧克力麵糊,不可能同時產出兩種不同口味的餅乾,因此餅乾成品確實是麵糊原料的函數。
  最後一個例子是「商品與價錢」,當你走近一家超市,你不會看到一罐鮮奶、一瓶罐頭上標示了兩種價錢,你只會看到一種,換句話說,每種商品具有唯一的價格,因此這又是一個函數的概念,產品定價是商品類型的函數,每一種商品只會對應到一種價格。
  回到數學問題,如果對應關係,不是你對人的「稱呼」也不是工廠中的「產物」與「配方原料」,而是「數字」與「數字」呢?數學家將機器改稱為函數,可以放入函數的原料,稱為「自變數」,函數產出的產物,改稱為「應變數」。就像前文舉的例子一樣,看到一種長相,腦海中只會聯想到你對他的唯一稱呼;放入機器一種麵糊,只能生產出一種口味的餅乾;在數學世界裡,輸入函數一個數字,也只能產出一個數字。為了將以上過程表示得更簡潔,我們將「自變數」取代號x「應變數」取代號y。並將「應變數」y是某個「自變數」x對應的唯一產物,即「y是x的函數」寫成:
  在數學世界裡,也可以找一個很實際的例子。比如某個函數是將丟進來的數字加五,並輸出到螢幕上。那麼這函數可以寫成:
  此時已經明確描述,自變數與應變數的對應法則:「自變數x加5等於應變數y」。我們只要用y或f(x)擇一表示函數結果即可,f(x)指的是這是一個x的函數,由數學家歐拉發明,寫作y則強調變數x可以產生另一種新的變數,仍是指y是x的函數。所有的產品y(或寫作f(x)),其實都是原料數字x加五而來,而且每一個數字x放進來只會產出一種產品,就是x+5。若將1放入這台函數(機器),就會得到唯一的答案:6;若將0放入這台函數(機器),就會得到唯一的答案5。
  若需將函數:給一個x對應到唯一的y之法則表示為圖形,通常使用「箭頭圖」:
箭頭圖,f表示函數的法則
雖然各類函數圖形的長相不再本文討論範圍內,依然附上座標平面上,y=x+5的圖形
  了解函數的基本定義後我們就可以更深入探討,函數的定義域與值域。定義域就是所有可以放入函數的自變數集合。拿上述例子來說,上述函數顯然什麼數字都可以放入,不論是自然數、負整數,有理數、無理數都可以產生唯一結果,所以我們說這個函數的定義域是「全體實數」;而這個函數產出的數是全體實數,所以它的值域也是全體實數,若用數學符號可以寫作x, y∈
  以下另舉一個函數y=1/x:
座標平面上,y=1/x的圖形
  是將輸入的數字放在分母,即1除以自變數x。這種函數顯然就不能輸入零,因為數學一般不討論分母為零的情況,所以這個函數的定義域是全體實數,但不包含0,而他的值域也不包含零,因為我們不可能找到一個x,使得函數1/x=0。若用數學符號也可以將定義域和值域分別寫作:{x|x≠0,x∈}{y|y≠0,y∈}。
  關於函數的更深入議題,會在日後的科普文章繼續探討。後續文章將利用生活例子,說明極限與無窮的定義。


註1:本文向初學者強調的是一個計算情境:「每當將一個自變數x帶到函數裡,只會算出一個應變數y」,所以說函數再輸入自變數時,是一對一的關係。但我們若以經知道這個函數的最後結果,包括定義域和值域與對應關係,可能會發現有許多自變數對應到同一個應變數,比如f(1)=0且f(2)=0,但是你在將x=1帶入函數時,仍然只會得到到0,帶入x=2時,也只對應到0,本文要表達的不是「一對一函數(單射函數)」(one to one function),而是說你在每次輸入單一個x值時,只會對應到一個y值,不會代入一個x,得到兩個或更多y值。
文章難度:易
為什麼會看到廣告
117會員
31內容數
由於學校上課時間有限,老師礙於進度壓力,時常無法慢慢一步步地帶領學生思考和理解數學中的觀念,而是倉促講解完概念後,開始進入計算解題。然而數學不單是計算而已,數學真正的精髓卻是在於背後觀念中,邏輯的推演與歸納。也因此期盼透過本專題的數學科普文,能幫助讀者看見數學的美,並提升讀者的思考、推理邏輯能力。
留言0
查看全部
發表第一個留言支持創作者!
Caspar的沙龍 的其他內容
  「怎麼學好數學?」可能是許多家長關心的問題,而「為什麼要學數學?」則是許多同學們的疑惑。「數學」在很多人心中就像一個大魔王,好像遇到他就束手無策,只能等著挨打。這系列文章希望以輕鬆的口吻,來回答上述學生、家長的常見問題,並給予一些建議。
  「怎麼學好數學?」可能是許多家長關心的問題,而「為什麼要學數學?」則是許多同學們的疑惑。「數學」在很多人心中就像一個大魔王,好像遇到他就束手無策,只能等著挨打。這系列文章希望以輕鬆的口吻,來回答上述學生、家長的常見問題,並給予一些建議。
你可能也想看
Google News 追蹤
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
11/20日NVDA即將公布最新一期的財報, 今天Sell Side的分析師, 開始調高目標價, 市場的股價也開始反應, 未來一週NVDA將重新回到美股市場的焦點, 今天我們要分析NVDA Sell Side怎麼看待這次NVDA的財報預測, 以及實際上Buy Side的倉位及操作, 從
Thumbnail
Hi 大家好,我是Ethan😊 相近大家都知道保濕是皮膚保養中最基本,也是最重要的一步。無論是在畫室裡長時間對著畫布,還是在旅途中面對各種氣候變化,保持皮膚的水分平衡對我來說至關重要。保濕化妝水不僅能迅速為皮膚補水,還能提升後續保養品的吸收效率。 曾經,我的保養程序簡單到只包括清潔和隨意上乳液
Thumbnail
本所許惠菁律師主持央廣【生活有辦法】, 「基泰建設」在施工的過程中,造成大直街94巷的房屋傾斜和下陷! 台北市長蔣萬安在媒體前公開說:「北市府會書面遞狀、聲請假扣押來確保住戶權益,要求基泰建設負起責任。」 到底什麼是假扣押?本週許律師將就基泰案進一步與聽眾朋友討論假扣押的概念。
Thumbnail
你認識自己嗎?你了解自己嗎? 你常重複做出相同的行為事後才後悔;然而,下一次發生類似的情形卻又做出同樣的反應,你百思不得其解,你明明不希望發生這樣的結果,為什麼卻又再次陷入同樣的情境中呢?
Thumbnail
生活有辦法:【生活話題】從奧運主題曲〈歡樂飲酒歌〉認識智慧財產權 本所許惠菁律師主持央廣【生活有辦法】, 由印刻出版社出版,蘭天律師所寫的《〈歡樂飲酒歌〉國際侵權訴訟案:台灣原住民vs.亞特蘭大奧運》。 本書詳細的紀錄了在1996年舉辦的奧運在未事先告知情況下,使用了臺灣阿美族郭英男老師演
Thumbnail
有沒有人,和我一樣很愛減肥。 減肥這件事,好像永遠都甩不掉,一直跟著我。 在以前,所謂的「減肥計畫」就是斷食,那時每天都餓到只想叫天叫地,肚子不停的咕嚕咕嚕叫,還是只能忍住,唯一的優點就是我很有毅力。 沒有什麼事,是做不到的,肚子,加油! 每一年我都要經過,「肚子再加油」的日子。雖然每次執行減肥時,
Thumbnail
【歷史上的今天】從舊金山和約中重新認識臺灣 本所許惠菁律師主持央廣【生活有辦法】,節目中我們要一起搭乘時光機回到歷史上的2022年4月28日,看看70年前的4月28日,世界發生了什麼重要的事? 舊金山和約 在舊金山和約簽訂滿70年後的今天,許多學者也提出「臺灣主權未定論」的議題探討。 本集重點
Thumbnail
📷 從我家看台灣人口結構改變 民國39-54年2次世界大戰剛結束,大家回到家鄉,除了努力工作,就拼命生小孩。生育數是台灣有史以來最高峰,稱為戰後嬰兒潮,每年生40幾萬個新生兒:我爸有7個兄弟姊妹。 民國70年我弟弟出生時,每年新生兒已經降到30萬,每年少10萬的新生兒,幅度蠻大的。
Thumbnail
這個秋,Chill 嗨嗨!穿搭美美去賞楓,裝備款款去露營⋯⋯你的秋天怎麼過?秋日 To Do List 等你分享! 秋季全站徵文,我們準備了五個創作主題,參賽還有機會獲得「火烤兩用鍋」,一起來看看如何參加吧~
Thumbnail
11/20日NVDA即將公布最新一期的財報, 今天Sell Side的分析師, 開始調高目標價, 市場的股價也開始反應, 未來一週NVDA將重新回到美股市場的焦點, 今天我們要分析NVDA Sell Side怎麼看待這次NVDA的財報預測, 以及實際上Buy Side的倉位及操作, 從
Thumbnail
Hi 大家好,我是Ethan😊 相近大家都知道保濕是皮膚保養中最基本,也是最重要的一步。無論是在畫室裡長時間對著畫布,還是在旅途中面對各種氣候變化,保持皮膚的水分平衡對我來說至關重要。保濕化妝水不僅能迅速為皮膚補水,還能提升後續保養品的吸收效率。 曾經,我的保養程序簡單到只包括清潔和隨意上乳液
Thumbnail
本所許惠菁律師主持央廣【生活有辦法】, 「基泰建設」在施工的過程中,造成大直街94巷的房屋傾斜和下陷! 台北市長蔣萬安在媒體前公開說:「北市府會書面遞狀、聲請假扣押來確保住戶權益,要求基泰建設負起責任。」 到底什麼是假扣押?本週許律師將就基泰案進一步與聽眾朋友討論假扣押的概念。
Thumbnail
你認識自己嗎?你了解自己嗎? 你常重複做出相同的行為事後才後悔;然而,下一次發生類似的情形卻又做出同樣的反應,你百思不得其解,你明明不希望發生這樣的結果,為什麼卻又再次陷入同樣的情境中呢?
Thumbnail
生活有辦法:【生活話題】從奧運主題曲〈歡樂飲酒歌〉認識智慧財產權 本所許惠菁律師主持央廣【生活有辦法】, 由印刻出版社出版,蘭天律師所寫的《〈歡樂飲酒歌〉國際侵權訴訟案:台灣原住民vs.亞特蘭大奧運》。 本書詳細的紀錄了在1996年舉辦的奧運在未事先告知情況下,使用了臺灣阿美族郭英男老師演
Thumbnail
有沒有人,和我一樣很愛減肥。 減肥這件事,好像永遠都甩不掉,一直跟著我。 在以前,所謂的「減肥計畫」就是斷食,那時每天都餓到只想叫天叫地,肚子不停的咕嚕咕嚕叫,還是只能忍住,唯一的優點就是我很有毅力。 沒有什麼事,是做不到的,肚子,加油! 每一年我都要經過,「肚子再加油」的日子。雖然每次執行減肥時,
Thumbnail
【歷史上的今天】從舊金山和約中重新認識臺灣 本所許惠菁律師主持央廣【生活有辦法】,節目中我們要一起搭乘時光機回到歷史上的2022年4月28日,看看70年前的4月28日,世界發生了什麼重要的事? 舊金山和約 在舊金山和約簽訂滿70年後的今天,許多學者也提出「臺灣主權未定論」的議題探討。 本集重點
Thumbnail
📷 從我家看台灣人口結構改變 民國39-54年2次世界大戰剛結束,大家回到家鄉,除了努力工作,就拼命生小孩。生育數是台灣有史以來最高峰,稱為戰後嬰兒潮,每年生40幾萬個新生兒:我爸有7個兄弟姊妹。 民國70年我弟弟出生時,每年新生兒已經降到30萬,每年少10萬的新生兒,幅度蠻大的。