從生活認識微積分(一):什麼是「函數」?

更新於 發佈於 閱讀時間約 6 分鐘
raw-image
這是微積分科普系列:「從生活認識微積分」中的第一篇,在本文中將列舉數個生活例子,帶你逐一了解函數的概念,透過「長相」與「稱呼」,「商品」與「價格」、「原料」與「產品」帶你了解函數、定義域、值域的定義,並了解函數的數學標示方法,即使沒有學過函數概念的人也能讀懂。

一、「從生活認識微積分」科普系列前言:

  許多人常因耳聞「微積分」是一門困難的學科,所以在學習前就對「微積分」產生恐懼,最後因心生恐懼而遭到許多挫折,無法順利學習微積分。「微積分」確實是一門深奧的學問,但是微積分的基本精神卻可以從生活中體會到,因此不難理解。若我們願意逐步打好「微積分」的根基,再不斷學習更高階的微積分應用、定理,學好微積分並非是無法達成的任務。本系列文章將列舉數個跟生活相關的例子,讓讀者從情境當中思考微積分的基本精神、與微積分相關的數學概念,避免讀者在學習正式課題前,已經先失去學習熱誠,並用輕鬆的方式讓你了解許多數學的基本概念。本系列的所有文章,都會在文末附上文章難度,提供不同程度的讀者參考。

二、什麼是「函數」(Function)?

  在建立微積分的概念前,我們得先了解函數的定義。因為操作微積分的對象是「函數」。函數就是一種「一對一的對應法則」(註1),本文將在以下舉三個生活例子,讓讀者認識什麼是函數。

  當你看到一個熟人的長相時,腦中會先想起平常對他的稱呼,再進一步向他打招呼。這當中就有函數的觀念,因為「長相」與「稱呼」有唯一的對應關係。你看到某一個朋友的長相,不會想到兩種截然不同的稱呼,而是一個唯一的名字,若每個人的長相在腦海中都只對應到唯一的稱呼,我們便可以說「稱呼」是「長相」的函數。

  再另舉一個例子:在工廠中,每種調好的麵糊配方只能生產出一樣餅乾,我們便可以稱餅乾是麵糊的函數,因為將巧克力麵糊放入機器,只能產出巧克力餅乾;將奶油麵糊放入機器,只能產出奶油餅乾,我們都知道放入巧克力麵糊,不可能同時產出兩種不同口味的餅乾,因此餅乾成品確實是麵糊原料的函數。

  最後一個例子是「商品與價錢」,當你走近一家超市,你不會看到一罐鮮奶、一瓶罐頭上標示了兩種價錢,你只會看到一種,換句話說,每種商品具有唯一的價格,因此這又是一個函數的概念,產品定價是商品類型的函數,每一種商品只會對應到一種價格。

  回到數學問題,如果對應關係,不是你對人的「稱呼」也不是工廠中的「產物」與「配方原料」,而是「數字」與「數字」呢?數學家將機器改稱為函數,可以放入函數的原料,稱為「自變數」,函數產出的產物,改稱為「應變數」。就像前文舉的例子一樣,看到一種長相,腦海中只會聯想到你對他的唯一稱呼;放入機器一種麵糊,只能生產出一種口味的餅乾;在數學世界裡,輸入函數一個數字,也只能產出一個數字。為了將以上過程表示得更簡潔,我們將「自變數」取代號x「應變數」取代號y。並將「應變數」y是某個「自變數」x對應的唯一產物,即「y是x的函數」寫成:

raw-image

  在數學世界裡,也可以找一個很實際的例子。比如某個函數是將丟進來的數字加五,並輸出到螢幕上。那麼這函數可以寫成:

raw-image

raw-image

  此時已經明確描述,自變數與應變數的對應法則:「自變數x加5等於應變數y」。我們只要用y或f(x)擇一表示函數結果即可,f(x)指的是這是一個x的函數,由數學家歐拉發明,寫作y則強調變數x可以產生另一種新的變數,仍是指y是x的函數。所有的產品y(或寫作f(x)),其實都是原料數字x加五而來,而且每一個數字x放進來只會產出一種產品,就是x+5。若將1放入這台函數(機器),就會得到唯一的答案:6;若將0放入這台函數(機器),就會得到唯一的答案5。

  若需將函數:給一個x對應到唯一的y之法則表示為圖形,通常使用「箭頭圖」:

raw-image
raw-image

  了解函數的基本定義後我們就可以更深入探討,函數的定義域與值域。定義域就是所有可以放入函數的自變數集合。拿上述例子來說,上述函數顯然什麼數字都可以放入,不論是自然數、負整數,有理數、無理數都可以產生唯一結果,所以我們說這個函數的定義域是「全體實數」;而這個函數產出的數是全體實數,所以它的值域也是全體實數,若用數學符號可以寫作x, y∈

  以下另舉一個函數y=1/x:

raw-image

  是將輸入的數字放在分母,即1除以自變數x。這種函數顯然就不能輸入零,因為數學一般不討論分母為零的情況,所以這個函數的定義域是全體實數,但不包含0,而他的值域也不包含零,因為我們不可能找到一個x,使得函數1/x=0。若用數學符號也可以將定義域和值域分別寫作:{x|x≠0,x∈}{y|y≠0,y∈}。

  關於函數的更深入議題,會在日後的科普文章繼續探討。後續文章將利用生活例子,說明極限與無窮的定義。



註1:本文向初學者強調的是一個計算情境:「每當將一個自變數x帶到函數裡,只會算出一個應變數y」,所以說函數再輸入自變數時,是一對一的關係。但我們若以經知道這個函數的最後結果,包括定義域和值域與對應關係,可能會發現有許多自變數對應到同一個應變數,比如f(1)=0且f(2)=0,但是你在將x=1帶入函數時,仍然只會得到到0,帶入x=2時,也只對應到0,本文要表達的不是「一對一函數(單射函數)」(one to one function),而是說你在每次輸入單一個x值時,只會對應到一個y值,不會代入一個x,得到兩個或更多y值。
文章難度:易

留言
avatar-img
留言分享你的想法!
Joe Tseng-avatar-img
2021/05/03
這樣總算明白了。初學者如我最大的困難大概是對符號的不理解。感謝作者已圖文帶入生活的說明,這是看到過最容易理解的了😄
Caspar-avatar-img
發文者
2018/06/25
回應讀者留言:「一對一的對應法則」有語病」 由於本文向初學者強調的是一個計算情境:「每當一個自變數x出現,只會配到一個應變數y」,所以說函數再輸入自變數時,是一對一的關係。但我們若以經知道這個函數的最後結果,包括定義域和值域與對應關係,可能會發現有許多自變數對應到同一個應變數,比如f(1)=0且f(2)=0,但是你在將x=1帶入函數時,仍然只會得到到0,帶入x=2時,也只對應到0,本文要表達的不是「一對一函數(單射函數)」(one to one function),而是說你在每次輸入單一個x值時,只會對應到一個y值,不會輸入進去一個x,得到兩個或更多y值。
avatar-img
Caspar的沙龍
121會員
31內容數
由於學校上課時間有限,老師礙於進度壓力,時常無法慢慢一步步地帶領學生思考和理解數學中的觀念,而是倉促講解完概念後,開始進入計算解題。然而數學不單是計算而已,數學真正的精髓卻是在於背後觀念中,邏輯的推演與歸納。也因此期盼透過本專題的數學科普文,能幫助讀者看見數學的美,並提升讀者的思考、推理邏輯能力。
Caspar的沙龍的其他內容
2020/01/20
  各位「從生活中看數學」讀者好,感謝這一年來大家的支持與閱讀。由於文章撰寫時間耗時較多,長文主要在暑假更新為主,所以未來除了文章撰寫之外,會以影音呈現數學的觀念,每個禮拜會定時更新。 我的Youtube頻道: https://www.youtube.com/channel/UCnJW-b2uW
Thumbnail
2020/01/20
  各位「從生活中看數學」讀者好,感謝這一年來大家的支持與閱讀。由於文章撰寫時間耗時較多,長文主要在暑假更新為主,所以未來除了文章撰寫之外,會以影音呈現數學的觀念,每個禮拜會定時更新。 我的Youtube頻道: https://www.youtube.com/channel/UCnJW-b2uW
Thumbnail
2019/08/21
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
2019/08/21
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
2019/08/17
  數學是一門嚴謹的語言,數學家們在公理和定義的基礎上,發掘並證明一個又一個的定理;數學證明的過程,好比偵探辦案一樣。偵探要有比常人好的推理能力和語言能力,語言能力須超出常人,才能透過用字遣詞、其他學科的背景知識發覺字裡行間所隱藏的象徵與意義,最後找出真相。本篇文章延續上篇介紹的公理與定義,說明數
Thumbnail
2019/08/17
  數學是一門嚴謹的語言,數學家們在公理和定義的基礎上,發掘並證明一個又一個的定理;數學證明的過程,好比偵探辦案一樣。偵探要有比常人好的推理能力和語言能力,語言能力須超出常人,才能透過用字遣詞、其他學科的背景知識發覺字裡行間所隱藏的象徵與意義,最後找出真相。本篇文章延續上篇介紹的公理與定義,說明數
Thumbnail
看更多
你可能也想看
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
每年4月、5月都是最多稅要繳的月份,當然大部份的人都是有機會繳到「綜合所得稅」,只是相當相當多人還不知道,原來繳給政府的稅!可以透過一些有活動的銀行信用卡或電子支付來繳,從繳費中賺一點點小確幸!就是賺個1%~2%大家也是很開心的,因為你們把沒回饋變成有回饋,就是用卡的最高境界 所得稅線上申報
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
全球科技產業的焦點,AKA 全村的希望 NVIDIA,於五月底正式發布了他們在今年 2025 第一季的財報 (輝達內部財務年度為 2026 Q1,實際日曆期間為今年二到四月),交出了打敗了市場預期的成績單。然而,在銷售持續高速成長的同時,川普政府加大對於中國的晶片管制......
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
重點摘要: 6 月繼續維持基準利率不變,強調維持高利率主因為關稅 點陣圖表現略為鷹派,收斂 2026、2027 年降息預期 SEP 連續 2 季下修 GDP、上修通膨預測值 --- 1.繼續維持利率不變,強調需要維持高利率是因為關稅: 聯準會 (Fed) 召開 6 月利率會議
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
Thumbnail
在二維平面上,連續變動的點 (x₁, y₁)、(x₂, y₂)、(x₃, y₃)⋯ 可以統稱為 (x, y)。 (x, y) 代表:沿著 x 軸向量 x̂ 之方向、行進了 x 的距離,再沿著 y 軸向量 ŷ 之方向、行進了 x 的距離,將兩者加總,所對應到的平面上的某個點。
Thumbnail
在二維平面上,連續變動的點 (x₁, y₁)、(x₂, y₂)、(x₃, y₃)⋯ 可以統稱為 (x, y)。 (x, y) 代表:沿著 x 軸向量 x̂ 之方向、行進了 x 的距離,再沿著 y 軸向量 ŷ 之方向、行進了 x 的距離,將兩者加總,所對應到的平面上的某個點。
Thumbnail
筆者只能說,沒有一致性的辦法,若以本篇著重在中段學生的狀況,過去的習慣,對成績最有效的辦法,是刷題目。但不是盲刷,是依照程度不同,自己要製作學習單,一次就針對一個小節,給個十題八題就好,讓中等程度的學生快速抓到這個題型的概念,跟大致切入的角度。
Thumbnail
筆者只能說,沒有一致性的辦法,若以本篇著重在中段學生的狀況,過去的習慣,對成績最有效的辦法,是刷題目。但不是盲刷,是依照程度不同,自己要製作學習單,一次就針對一個小節,給個十題八題就好,讓中等程度的學生快速抓到這個題型的概念,跟大致切入的角度。
Thumbnail
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋,這篇文章則將用幾何角度來了解函數微分。上文已引入代數和幾何的觀念;概略介紹函數的圖形定義;本篇文章則從字源學引入割線的概念,若未讀過上篇的讀者,可按此連結上篇。
Thumbnail
至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋,這篇文章則將用幾何角度來了解函數微分。上文已引入代數和幾何的觀念;概略介紹函數的圖形定義;本篇文章則從字源學引入割線的概念,若未讀過上篇的讀者,可按此連結上篇。
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
Thumbnail
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
Thumbnail
這是微積分科普系列文章的第三篇,本文分成兩個部分。第一部分:由於上文以極限的反思作結,告訴讀者透過實驗與推測,不能確定函數的極限,因此本文將以嚴格的數學定義,說明如何證明函數的極限,回答上文中的反思問題,了解定義後,未來再證明函數極限的加、減、乘、除;第二部分:將以生活對話向你解釋「無限大、無限小」
Thumbnail
這是微積分科普系列文章的第三篇,本文分成兩個部分。第一部分:由於上文以極限的反思作結,告訴讀者透過實驗與推測,不能確定函數的極限,因此本文將以嚴格的數學定義,說明如何證明函數的極限,回答上文中的反思問題,了解定義後,未來再證明函數極限的加、減、乘、除;第二部分:將以生活對話向你解釋「無限大、無限小」
Thumbnail
這是微積分科普系列文章的第二篇,本文將以生活情境向你解釋「靠近」的概念,了解趨近的含義後,再說明如何用數學語言表示極限,並讓讀者透過直覺的函數圖形和計算,了解函數極限的意義,最後引導讀者思考、提出質疑,更加嚴格的函數極限定義,應符合哪些要求。
Thumbnail
這是微積分科普系列文章的第二篇,本文將以生活情境向你解釋「靠近」的概念,了解趨近的含義後,再說明如何用數學語言表示極限,並讓讀者透過直覺的函數圖形和計算,了解函數極限的意義,最後引導讀者思考、提出質疑,更加嚴格的函數極限定義,應符合哪些要求。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News