從生活認識微積分(一):什麼是「函數」?

更新 發佈閱讀 6 分鐘
raw-image
這是微積分科普系列:「從生活認識微積分」中的第一篇,在本文中將列舉數個生活例子,帶你逐一了解函數的概念,透過「長相」與「稱呼」,「商品」與「價格」、「原料」與「產品」帶你了解函數、定義域、值域的定義,並了解函數的數學標示方法,即使沒有學過函數概念的人也能讀懂。

一、「從生活認識微積分」科普系列前言:

  許多人常因耳聞「微積分」是一門困難的學科,所以在學習前就對「微積分」產生恐懼,最後因心生恐懼而遭到許多挫折,無法順利學習微積分。「微積分」確實是一門深奧的學問,但是微積分的基本精神卻可以從生活中體會到,因此不難理解。若我們願意逐步打好「微積分」的根基,再不斷學習更高階的微積分應用、定理,學好微積分並非是無法達成的任務。本系列文章將列舉數個跟生活相關的例子,讓讀者從情境當中思考微積分的基本精神、與微積分相關的數學概念,避免讀者在學習正式課題前,已經先失去學習熱誠,並用輕鬆的方式讓你了解許多數學的基本概念。本系列的所有文章,都會在文末附上文章難度,提供不同程度的讀者參考。

二、什麼是「函數」(Function)?

  在建立微積分的概念前,我們得先了解函數的定義。因為操作微積分的對象是「函數」。函數就是一種「一對一的對應法則」(註1),本文將在以下舉三個生活例子,讓讀者認識什麼是函數。

  當你看到一個熟人的長相時,腦中會先想起平常對他的稱呼,再進一步向他打招呼。這當中就有函數的觀念,因為「長相」與「稱呼」有唯一的對應關係。你看到某一個朋友的長相,不會想到兩種截然不同的稱呼,而是一個唯一的名字,若每個人的長相在腦海中都只對應到唯一的稱呼,我們便可以說「稱呼」是「長相」的函數。

  再另舉一個例子:在工廠中,每種調好的麵糊配方只能生產出一樣餅乾,我們便可以稱餅乾是麵糊的函數,因為將巧克力麵糊放入機器,只能產出巧克力餅乾;將奶油麵糊放入機器,只能產出奶油餅乾,我們都知道放入巧克力麵糊,不可能同時產出兩種不同口味的餅乾,因此餅乾成品確實是麵糊原料的函數。

  最後一個例子是「商品與價錢」,當你走近一家超市,你不會看到一罐鮮奶、一瓶罐頭上標示了兩種價錢,你只會看到一種,換句話說,每種商品具有唯一的價格,因此這又是一個函數的概念,產品定價是商品類型的函數,每一種商品只會對應到一種價格。

  回到數學問題,如果對應關係,不是你對人的「稱呼」也不是工廠中的「產物」與「配方原料」,而是「數字」與「數字」呢?數學家將機器改稱為函數,可以放入函數的原料,稱為「自變數」,函數產出的產物,改稱為「應變數」。就像前文舉的例子一樣,看到一種長相,腦海中只會聯想到你對他的唯一稱呼;放入機器一種麵糊,只能生產出一種口味的餅乾;在數學世界裡,輸入函數一個數字,也只能產出一個數字。為了將以上過程表示得更簡潔,我們將「自變數」取代號x「應變數」取代號y。並將「應變數」y是某個「自變數」x對應的唯一產物,即「y是x的函數」寫成:

raw-image

  在數學世界裡,也可以找一個很實際的例子。比如某個函數是將丟進來的數字加五,並輸出到螢幕上。那麼這函數可以寫成:

raw-image

raw-image

  此時已經明確描述,自變數與應變數的對應法則:「自變數x加5等於應變數y」。我們只要用y或f(x)擇一表示函數結果即可,f(x)指的是這是一個x的函數,由數學家歐拉發明,寫作y則強調變數x可以產生另一種新的變數,仍是指y是x的函數。所有的產品y(或寫作f(x)),其實都是原料數字x加五而來,而且每一個數字x放進來只會產出一種產品,就是x+5。若將1放入這台函數(機器),就會得到唯一的答案:6;若將0放入這台函數(機器),就會得到唯一的答案5。

  若需將函數:給一個x對應到唯一的y之法則表示為圖形,通常使用「箭頭圖」:

raw-image
raw-image

  了解函數的基本定義後我們就可以更深入探討,函數的定義域與值域。定義域就是所有可以放入函數的自變數集合。拿上述例子來說,上述函數顯然什麼數字都可以放入,不論是自然數、負整數,有理數、無理數都可以產生唯一結果,所以我們說這個函數的定義域是「全體實數」;而這個函數產出的數是全體實數,所以它的值域也是全體實數,若用數學符號可以寫作x, y∈

  以下另舉一個函數y=1/x:

raw-image

  是將輸入的數字放在分母,即1除以自變數x。這種函數顯然就不能輸入零,因為數學一般不討論分母為零的情況,所以這個函數的定義域是全體實數,但不包含0,而他的值域也不包含零,因為我們不可能找到一個x,使得函數1/x=0。若用數學符號也可以將定義域和值域分別寫作:{x|x≠0,x∈}{y|y≠0,y∈}。

  關於函數的更深入議題,會在日後的科普文章繼續探討。後續文章將利用生活例子,說明極限與無窮的定義。



註1:本文向初學者強調的是一個計算情境:「每當將一個自變數x帶到函數裡,只會算出一個應變數y」,所以說函數再輸入自變數時,是一對一的關係。但我們若以經知道這個函數的最後結果,包括定義域和值域與對應關係,可能會發現有許多自變數對應到同一個應變數,比如f(1)=0且f(2)=0,但是你在將x=1帶入函數時,仍然只會得到到0,帶入x=2時,也只對應到0,本文要表達的不是「一對一函數(單射函數)」(one to one function),而是說你在每次輸入單一個x值時,只會對應到一個y值,不會代入一個x,得到兩個或更多y值。
文章難度:易

留言
avatar-img
Caspar的沙龍
121會員
31內容數
由於學校上課時間有限,老師礙於進度壓力,時常無法慢慢一步步地帶領學生思考和理解數學中的觀念,而是倉促講解完概念後,開始進入計算解題。然而數學不單是計算而已,數學真正的精髓卻是在於背後觀念中,邏輯的推演與歸納。也因此期盼透過本專題的數學科普文,能幫助讀者看見數學的美,並提升讀者的思考、推理邏輯能力。
Caspar的沙龍的其他內容
2020/01/20
  各位「從生活中看數學」讀者好,感謝這一年來大家的支持與閱讀。由於文章撰寫時間耗時較多,長文主要在暑假更新為主,所以未來除了文章撰寫之外,會以影音呈現數學的觀念,每個禮拜會定時更新。 我的Youtube頻道: https://www.youtube.com/channel/UCnJW-b2uW
Thumbnail
2020/01/20
  各位「從生活中看數學」讀者好,感謝這一年來大家的支持與閱讀。由於文章撰寫時間耗時較多,長文主要在暑假更新為主,所以未來除了文章撰寫之外,會以影音呈現數學的觀念,每個禮拜會定時更新。 我的Youtube頻道: https://www.youtube.com/channel/UCnJW-b2uW
Thumbnail
2019/08/21
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
2019/08/21
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
2019/08/17
  數學是一門嚴謹的語言,數學家們在公理和定義的基礎上,發掘並證明一個又一個的定理;數學證明的過程,好比偵探辦案一樣。偵探要有比常人好的推理能力和語言能力,語言能力須超出常人,才能透過用字遣詞、其他學科的背景知識發覺字裡行間所隱藏的象徵與意義,最後找出真相。本篇文章延續上篇介紹的公理與定義,說明數
Thumbnail
2019/08/17
  數學是一門嚴謹的語言,數學家們在公理和定義的基礎上,發掘並證明一個又一個的定理;數學證明的過程,好比偵探辦案一樣。偵探要有比常人好的推理能力和語言能力,語言能力須超出常人,才能透過用字遣詞、其他學科的背景知識發覺字裡行間所隱藏的象徵與意義,最後找出真相。本篇文章延續上篇介紹的公理與定義,說明數
Thumbnail
看更多
你可能也想看
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
Thumbnail
1.0 從函數到函算語法 1.2 函數概念小史 1.2.1 中譯的來源 1.2.2 一個速度問題 1.2.3 幾何的方法 1.2.4 微積分的記法  三 有些讀者大概都知道,微積分學有兩個分科﹕一為微分學 (differential calculus),一為積分學 (integ
Thumbnail
在二維平面上,連續變動的點 (x₁, y₁)、(x₂, y₂)、(x₃, y₃)⋯ 可以統稱為 (x, y)。 (x, y) 代表:沿著 x 軸向量 x̂ 之方向、行進了 x 的距離,再沿著 y 軸向量 ŷ 之方向、行進了 x 的距離,將兩者加總,所對應到的平面上的某個點。
Thumbnail
在二維平面上,連續變動的點 (x₁, y₁)、(x₂, y₂)、(x₃, y₃)⋯ 可以統稱為 (x, y)。 (x, y) 代表:沿著 x 軸向量 x̂ 之方向、行進了 x 的距離,再沿著 y 軸向量 ŷ 之方向、行進了 x 的距離,將兩者加總,所對應到的平面上的某個點。
Thumbnail
筆者只能說,沒有一致性的辦法,若以本篇著重在中段學生的狀況,過去的習慣,對成績最有效的辦法,是刷題目。但不是盲刷,是依照程度不同,自己要製作學習單,一次就針對一個小節,給個十題八題就好,讓中等程度的學生快速抓到這個題型的概念,跟大致切入的角度。
Thumbnail
筆者只能說,沒有一致性的辦法,若以本篇著重在中段學生的狀況,過去的習慣,對成績最有效的辦法,是刷題目。但不是盲刷,是依照程度不同,自己要製作學習單,一次就針對一個小節,給個十題八題就好,讓中等程度的學生快速抓到這個題型的概念,跟大致切入的角度。
Thumbnail
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋,這篇文章則將用幾何角度來了解函數微分。上文已引入代數和幾何的觀念;概略介紹函數的圖形定義;本篇文章則從字源學引入割線的概念,若未讀過上篇的讀者,可按此連結上篇。
Thumbnail
至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋,這篇文章則將用幾何角度來了解函數微分。上文已引入代數和幾何的觀念;概略介紹函數的圖形定義;本篇文章則從字源學引入割線的概念,若未讀過上篇的讀者,可按此連結上篇。
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
Thumbnail
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
Thumbnail
這是微積分科普系列文章的第三篇,本文分成兩個部分。第一部分:由於上文以極限的反思作結,告訴讀者透過實驗與推測,不能確定函數的極限,因此本文將以嚴格的數學定義,說明如何證明函數的極限,回答上文中的反思問題,了解定義後,未來再證明函數極限的加、減、乘、除;第二部分:將以生活對話向你解釋「無限大、無限小」
Thumbnail
這是微積分科普系列文章的第三篇,本文分成兩個部分。第一部分:由於上文以極限的反思作結,告訴讀者透過實驗與推測,不能確定函數的極限,因此本文將以嚴格的數學定義,說明如何證明函數的極限,回答上文中的反思問題,了解定義後,未來再證明函數極限的加、減、乘、除;第二部分:將以生活對話向你解釋「無限大、無限小」
Thumbnail
這是微積分科普系列文章的第二篇,本文將以生活情境向你解釋「靠近」的概念,了解趨近的含義後,再說明如何用數學語言表示極限,並讓讀者透過直覺的函數圖形和計算,了解函數極限的意義,最後引導讀者思考、提出質疑,更加嚴格的函數極限定義,應符合哪些要求。
Thumbnail
這是微積分科普系列文章的第二篇,本文將以生活情境向你解釋「靠近」的概念,了解趨近的含義後,再說明如何用數學語言表示極限,並讓讀者透過直覺的函數圖形和計算,了解函數極限的意義,最後引導讀者思考、提出質疑,更加嚴格的函數極限定義,應符合哪些要求。
Thumbnail
這是微積分科普系列:「從生活認識微積分」中的第一篇,在本文中將列舉數個生活例子,帶你逐一了解函數的概念,透過「長相」與「稱呼」,「商品」與「價格」、「原料」與「產品」帶你了解函數、定義域、值域的定義,並了解函數的數學標示方法,即使沒有學過函數概念的人也能讀懂。
Thumbnail
這是微積分科普系列:「從生活認識微積分」中的第一篇,在本文中將列舉數個生活例子,帶你逐一了解函數的概念,透過「長相」與「稱呼」,「商品」與「價格」、「原料」與「產品」帶你了解函數、定義域、值域的定義,並了解函數的數學標示方法,即使沒有學過函數概念的人也能讀懂。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News