avatar-img

從生活看數學

14公開內容
4私密內容

由於學校上課時間有限,老師礙於進度壓力,時常無法慢慢一步步地帶領學生思考和理解數學中的觀念,而是倉促講解完概念後,開始進入計算解題。然而數學不單是計算而已,數學真正的精髓卻是在於背後觀念中,邏輯的推演與歸納。也因此期盼透過本專題的數學科普文,能幫助讀者看見數學的美,並提升讀者的思考、推理邏輯能力。

全部內容
免費與付費
最新發佈優先
avatar-avatar
Caspar
  各位「從生活中看數學」讀者好,感謝這一年來大家的支持與閱讀。由於文章撰寫時間耗時較多,長文主要在暑假更新為主,所以未來除了文章撰寫之外,會以影音呈現數學的觀念,每個禮拜會定時更新。 我的Youtube頻道: https://www.youtube.com/channel/UCnJW-b2uW
Thumbnail
avatar-avatar
小院子
從小學開始學乘法以後,數學就再也沒及格過了……把導數函數說明如此清新我都能懂,真的非常感謝~如果數學教育能告訴學生為什麼要學這些,與實際生活的關聯,學生的痛苦一定能減輕非常多。
avatar-avatar
Caspar
  本篇文章從將延續上文脈絡,從上文探討的座標、割線定義,接續探討連續函數的切線,說明割線與切線之間的關係。並銜接之後對微分幾何意義總結所做的文章。 (四)連續函數的切線    有了割線的觀念後,切線的觀念就十分容易理解了。想像函數圖形上有相異兩點(x1, f(x1))和(x2, f(x2)),經由
Thumbnail
付費限定
avatar-avatar
Caspar
  數學是一門嚴謹的語言,數學家們在公理和定義的基礎上,發掘並證明一個又一個的定理;數學證明的過程,好比偵探辦案一樣。偵探要有比常人好的推理能力和語言能力,語言能力須超出常人,才能透過用字遣詞、其他學科的背景知識發覺字裡行間所隱藏的象徵與意義,最後找出真相。本篇文章延續上篇介紹的公理與定義,說明數
Thumbnail
付費限定
avatar-avatar
Caspar
至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋,這篇文章則將用幾何角度來了解函數微分。上文已引入代數和幾何的觀念;概略介紹函數的圖形定義;本篇文章則從字源學引入割線的概念,若未讀過上篇的讀者,可按此連結上篇。
Thumbnail
avatar-avatar
Caspar
  數學和人類溝通使用的語言十分相似,但卻常受人忽視。因為過度重視考試的解題技巧與速度,人們學了許久數學,不見得都能洞察數學和語文的相似性。但是,本篇文章將介紹讀者,數學可以視為世界上最精準的語言,這篇文章同時分享閱讀數學專業書籍時,如何抱著學習語言的心學習數學。這篇文章以輕鬆的方式讓讀者看見數學的
Thumbnail
avatar-avatar
Caspar
  至今為止,本文都使用代數的方式來討論微分,並以生活、科學中的瞬間變化率,如:速度等,對微分的定義做出詮釋。這一系列主題文章「函數微分的幾何意義」將分多集探討,用幾何角度來了解函數微分。本文章第一集將先引入代數和幾何的觀念;在概略介紹函數的圖形定義。
Thumbnail
avatar-avatar
Caspar
上篇先以電影橋段開頭,說明專有名詞的產生原因,與下篇則聚焦於生物和數學中專有名詞的功用,並說明如何教育專有名詞和嚴格的定義,以及錯誤教育方式可能導致的不良結果。 在這篇文章中,將聚焦於數學和生物的專有名詞與定義的功用。最後小結將探討我對於專有名詞、定義、科學素養的教育看法。
avatar-avatar
Caspar
這篇文章中將延續上文脈絡,先回顧某一定值的導數和可微分的定義,讓讀者發現x=n時的導數與某個給定的定值n已經形成函數關係;接著透過同一個人的不同裝扮與不同稱呼,來說明數學變換符號的意義。第三段將導數的符號作變換,表示導函數的概念與定義,最後總結導函數即是微分,以及重新回顧微分的意義。
Thumbnail
感謝貴文詳實的介紹,使人收穫良多。但個人有一疑問請教:在四、小結中提到“...將某一定值時的「導數」視為一個函數,找出把「每一個瞬間」對應到「瞬間變化率」的函數,這個過程就是「微分」。... ”。依個人對導(函)數的了解,如果某函數f之方程已知且可微,其圖上適用任一點之導函數f'只有一個,差別只在所選擇的某一定值以及根據此導函數f'之方程所得出之f'(x)不同。例如f函數方程:f(x) =x^2 + x,則其導函數方程為:f'(x) = 2x + 1,代入任何定義域中的x值都是根據f'(x) = 2x + 1的函數關係來得到其f'(x)值。但上文中所提“將某一定值時的「導數」視為一個函數”似乎易使人誤解導數與x之函數關係會隨x值變化,亦即不同x值會有它各自的導函數。故此建議能有其它的表述方式,如「一函數f存在唯一之導函數f',函數中定義域中的數值皆根據此f'之函數關係求得其對應之f'(x)值」。以上建議如有誤謬尚祈指教更正,不勝感激。
付費限定
avatar-avatar
Caspar
  上篇文章介紹物理學家如何定義瞬時速度,本篇文章將延續上回文章脈絡,帶領讀者從回顧瞬時速度的由來,一般化瞬時速度的定義,最後引入導數和可微分的的定義,說明導數、瞬間變化率、可微分,牽涉到同一極限的觀念,讓讀者由現實世界逐步走入抽象世界。
Thumbnail
avatar-avatar
Caspar
本篇文章延續先前主軸,且分上、下兩篇。上篇將主旨聚焦於單一例子:「瞬時速度」,透過討論貓咪奔跑之實例,複習並計算平均速度之定義,在說明瞬時速度的觀念,最後進一步鋪成下篇的抽象微分概念。
Thumbnail