OpenCV應用

含有「OpenCV應用」共 9 篇內容
全部內容
發佈日期由新至舊
付費限定
接續上一邊,分割了螺絲與螺母的圖像,但分割後的結果,因為螺絲過於接近的關係,沒有切割乾淨,會有其他螺絲的頭或者身體,這樣會影響到後續量測。 [OpenCV應用][Python]擷取出螺絲或螺母的影像 本文主要是,如何去除掉不要的背景雜物。 下層為原先分割的圖,上層為去除背景雜物的圖。
Thumbnail
付費限定
此篇為上一篇文章的延伸,先辦別是螺絲還是螺母才擷取出影像。 [OpenCV應用][Python]利用findContours辨識螺絲還是螺母 因為可能會需要另外處理螺絲與螺母才可以準確地去做量測,所以第一步就是先分割出這兩種的圖像。
Thumbnail
付費限定
[OpenCV應用][Python]找出圖像中的四個方位的邊緣點求出寬高 呈上篇應用Numpy找到的座標點,那我們如何捨棄掉差異過大的座標點呢? 可能圖像物件邊緣不佳,採樣就會差異過大,造成計算出的寬高是不準確的。 遇到這種狀況,就可以使用下方的程式範例來篩選座標點。 為求方便,此範例跟圖
Thumbnail
廢話不多說,先上成果圖。 成果圖 主要實現方法 1.灰階後利用cv2.Canny找物體的邊緣 2.找物件相對應的直線cv2.HoughLines 3.分類為橫向和垂直的直線角度,求得相對於物件的旋轉角度 4.根據算出的相對應旋轉角度將物件轉正
Thumbnail
付費限定
本文介紹如何使用OpenCV的分水嶺演算法來實作硬幣的影像分割。除了官方範例外,還加入取出分割後物件的中心點來標註的功能。透過二值化、距離圖、前景圖、分割背景圖等步驟,最後應用分水嶺演算法進行硬幣的分割。本文也提供程式範例及圖示逐步解析演算法。
Thumbnail
付費限定
本文介紹OpenCV中的SimpleBlobDetector用於檢測斑點或圓,以及其與霍夫轉換找圓方法的差異。透過程式範例和解析,講解檢測到的關鍵點和設定參數,並整理SimpleBlobDetector與霍夫轉換的不同。最後,探討不同的應用場景和參數調整。
Thumbnail
視覺系列還有更新嗎? 這裡可以小小請求作者可以用螺絲來當教學嗎?例如怎麼分辨螺絲和螺母,螺絲的牙距等等
付費限定
大部分在求物件的寬度及高度,都會想到用OpenCV的findContours函式來做,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度 [OpenCV應用][Python]利用findContours找出物件邊界框求出寬度及高度 本文將用不同的方法,利用Numpy
Thumbnail
付費限定
本文將利用OpenCV的findContours函式,從找到的輪廓中來計算物件的面積,周長,邊界框等屬性,從而得到物體的寬度與高度。 一般來說,我們在進行輪廓檢測時,會先進行圖像二值化,將對象轉換為白色,背景為黑色。這樣,在找到輪廓後,輪廓的點就會以白色表示,背景為黑色。 結果圖 從圖中綠色框
Thumbnail
付費限定
利用OPENCV,實現SIFT應用,尋找圖片中物件的旋轉角度 本文介紹主要提出SIFT提取關鍵角點的座標,由此算出物件的旋轉角度 程式功能介紹 : 導入待檢測圖及樣本圖,則會依照樣本圖中的物件為基準
Thumbnail