數學課-幾何圖形

更新 發佈閱讀 1 分鐘

歐幾里得:幾何公設

  1. 從一點向另一點可以引一條直線。
  2. 任意線段能無限延伸成一條直線。
  3. 給定任意線段,可以以其一個端點作為圓心,該線段作為半徑作一個圓。
  4. 所有直角都相等。
  5. 若兩條直線都與第三條直線相交,並且在同一邊的內角之和小於雨個直角,則這兩條直線在這一邊必定相交。
raw-image
raw-image
raw-image
raw-image
raw-image

古人畫正三角形

raw-image

古人畫正方形

raw-image

橢圓的定義

加起來會一樣

raw-image

名詞定義

raw-image
raw-image
留言
avatar-img
翁子涵的沙龍
10會員
2內容數
你可能也想看
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
在 vocus 與你一起探索內容、發掘靈感的路上,我們又將啟動新的冒險——vocus App 正式推出! 現在起,你可以在 iOS App Store 下載全新上架的 vocus App。 無論是在通勤路上、日常空檔,或一天結束後的放鬆時刻,都能自在沈浸在內容宇宙中。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
vocus 慶祝推出 App,舉辦 2026 全站慶。推出精選內容與數位商品折扣,訂單免費與紅包抽獎、新註冊會員專屬活動、Boba Boost 贊助抽紅包,以及全站徵文,並邀請你一起來回顧過去的一年, vocus 與創作者共同留下了哪些精彩創作。
Thumbnail
前篇提到,任意向量 V⃗ 可以描述為一組基底向量之組成: V⃗ = V¹ g⃗₁ + V² g⃗₂ 這可以簡寫為: V⃗ = Vᵐ g⃗ₘ
Thumbnail
前篇提到,任意向量 V⃗ 可以描述為一組基底向量之組成: V⃗ = V¹ g⃗₁ + V² g⃗₂ 這可以簡寫為: V⃗ = Vᵐ g⃗ₘ
Thumbnail
歐幾里得:幾何公設 1. 從一點向另一點可以引一條直線。 2.任意線段能無限延伸成一條直線。 3.給定任意線段,可以以其一個端點作為圓心,該線段作為半徑作一個圓。 4.所有直角都相等。 5.若兩條直線都與第三條直線相交,並且在同一邊的內角之和小於兩個直角,則這兩條直線在這一邊必定相交。
Thumbnail
歐幾里得:幾何公設 1. 從一點向另一點可以引一條直線。 2.任意線段能無限延伸成一條直線。 3.給定任意線段,可以以其一個端點作為圓心,該線段作為半徑作一個圓。 4.所有直角都相等。 5.若兩條直線都與第三條直線相交,並且在同一邊的內角之和小於兩個直角,則這兩條直線在這一邊必定相交。
Thumbnail
歐幾里得:幾何公設 從一點向另一點可以引一條直線。 任意線段能無限延伸成一條直線。 給定任意線段,可以以其一個端點作為圓心,該線段作為半徑作一個圓。 所有直角都相等。 若兩條直線都與第三條直線相交,並且在同一邊的內角之和小於雨個直角,則這兩條直線在這一邊必定相交。 古人畫正三角形 古人畫正方形 橢圓
Thumbnail
歐幾里得:幾何公設 從一點向另一點可以引一條直線。 任意線段能無限延伸成一條直線。 給定任意線段,可以以其一個端點作為圓心,該線段作為半徑作一個圓。 所有直角都相等。 若兩條直線都與第三條直線相交,並且在同一邊的內角之和小於雨個直角,則這兩條直線在這一邊必定相交。 古人畫正三角形 古人畫正方形 橢圓
Thumbnail
圓形沒辦法就題型一個個解釋,這真的不如去買參考書,把詳解都看到懂。只是就整合性而言,筆者比較建議,教的時候以動態畫圖輔助,學的人也可以透過這個方式,發現自己哪邊卡住。卡住的原因不見得是空間能力不佳,往往只是因為順序差了一點,讓後面整個都歪掉而已。
Thumbnail
圓形沒辦法就題型一個個解釋,這真的不如去買參考書,把詳解都看到懂。只是就整合性而言,筆者比較建議,教的時候以動態畫圖輔助,學的人也可以透過這個方式,發現自己哪邊卡住。卡住的原因不見得是空間能力不佳,往往只是因為順序差了一點,讓後面整個都歪掉而已。
Thumbnail
國三幾何會把過去一二年級學過的全部用上,所以考試成績會讓學生很挫折。這種考驗過去有沒學好的總整理,筆者個人的經驗是:「沒辦法」。過去沒打好的底,想要臨時抱佛腳,在幾何這種非常需要累積的部分一定撞牆。此時想從頭鍛鍊實在很拚,做不到也不勉強,就抓好基礎題型的觀念,把握基本分就對了。 第二部分是圓形,這是
Thumbnail
國三幾何會把過去一二年級學過的全部用上,所以考試成績會讓學生很挫折。這種考驗過去有沒學好的總整理,筆者個人的經驗是:「沒辦法」。過去沒打好的底,想要臨時抱佛腳,在幾何這種非常需要累積的部分一定撞牆。此時想從頭鍛鍊實在很拚,做不到也不勉強,就抓好基礎題型的觀念,把握基本分就對了。 第二部分是圓形,這是
Thumbnail
終於到了最後,同學進入國三,嚴格說國三只有1個半學期,接著就要會考了。所以內容並不多,但學習的分量很重。國三上數學,可分為相似形、圓形與三角形的心,也就是國中幾何。基本原理要懂一點都不難,但由於國三幾何會把過去一二年級學過的全部用上,所以考試成績會讓學生很挫折。這種考驗過去有沒學好的總整理,筆者個人
Thumbnail
終於到了最後,同學進入國三,嚴格說國三只有1個半學期,接著就要會考了。所以內容並不多,但學習的分量很重。國三上數學,可分為相似形、圓形與三角形的心,也就是國中幾何。基本原理要懂一點都不難,但由於國三幾何會把過去一二年級學過的全部用上,所以考試成績會讓學生很挫折。這種考驗過去有沒學好的總整理,筆者個人
Thumbnail
(Day 24) 2022 06/8 公設1:任意一點到另外任意一點可以畫直線。 公設2:一條有限線段可以繼續延長。 公設3:以任意點為心及任意的距離可以畫圓。 公設4:凡直角都彼此相等。 公設5的敘述相當繁複,後世數學家給出了一個等效的敘述:過直線外的一點,恰有一平行線與之平行。
Thumbnail
(Day 24) 2022 06/8 公設1:任意一點到另外任意一點可以畫直線。 公設2:一條有限線段可以繼續延長。 公設3:以任意點為心及任意的距離可以畫圓。 公設4:凡直角都彼此相等。 公設5的敘述相當繁複,後世數學家給出了一個等效的敘述:過直線外的一點,恰有一平行線與之平行。
Thumbnail
幾何在中低年級,碰到的都是基本平面圖型,大體上會有問題的不多,經驗上大多數同學,都可以平安度過,如果不熟的八成是出在沒認真,例如邊長、周長、面積,但許多父母就不解,為何五年級開始就不行。這個原因倒不是面積公式很難,大部分的情況是定義不熟,簡稱從小沒認真上課,也不勤加練習。
Thumbnail
幾何在中低年級,碰到的都是基本平面圖型,大體上會有問題的不多,經驗上大多數同學,都可以平安度過,如果不熟的八成是出在沒認真,例如邊長、周長、面積,但許多父母就不解,為何五年級開始就不行。這個原因倒不是面積公式很難,大部分的情況是定義不熟,簡稱從小沒認真上課,也不勤加練習。
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News