付費限定

多元迴歸分析簡介

更新 發佈閱讀 1 分鐘

多元線性迴歸分析(Multiple regression analysis)是一種統計學方法,用於探索多個解釋變量對一個目標變量的影響。它是建立在線性迴歸分析的基礎上的,多元迴歸分析用於探討多個預測變數及一個依變數之間的關係,並且每個變項都是連續變項。本文將介紹多元迴歸分析概念。


raw-image

多元線性迴歸分析(Multiple regression analysis)其原理是取得最適合解釋自變項們和依變項的線性關係。主要使用的方法為最小平方法(OLS),求取誤差的平方最小化的一種估計方法。

斜率:在非標準化時,每一個單位自變項變化時,依變項的變化;在標準化時,每一個標準差自變項變化時,依變項的標準差變化
截距:在非標準化時。當自變項為0,依變項的值;標準化時為0
以行動支持創作者!付費即可解鎖
本篇內容共 1537 字、0 則留言,僅發佈於統計分析 × 學術生涯你目前無法檢視以下內容,可能因為尚未登入,或沒有該房間的查看權限。
留言
avatar-img
留言分享你的想法!
avatar-img
教育心理博士的筆記本
255會員
146內容數
文章內容以圖像式和步驟化方式,教您如何在各種統計軟體中(例如:SPSS、R和Mplus),執行多種統計方法。此外,我還會分享一些學術和科技新知,幫助您在學術之路上走得更順利。
2024/11/28
以前,若多因子的變異數分析的變異數同異質性假設未通過,那麼變異數分析的F值就會有所誤差,也沒有適當的無母數統計可以替代。最近,有學者提倡Welch-James統計量,這種方法相較於傳統的方差分析更具有穩健性,並且同樣可以檢驗因子主效應和交互作用。通過一些實際案例,我們展示瞭如何在R語言中使用本方法。
Thumbnail
2024/11/28
以前,若多因子的變異數分析的變異數同異質性假設未通過,那麼變異數分析的F值就會有所誤差,也沒有適當的無母數統計可以替代。最近,有學者提倡Welch-James統計量,這種方法相較於傳統的方差分析更具有穩健性,並且同樣可以檢驗因子主效應和交互作用。通過一些實際案例,我們展示瞭如何在R語言中使用本方法。
Thumbnail
2024/05/01
高低分組,顧名思義,就是把考生的成績分成兩組:表現最好的一組和表現最差的一組。依據Kelley(1939),通常前27%的考生是高分組,後27%的考生是低分組。如果高分組和低分組的表現差異很大,那麼說明這題題目鑑別度高,能有效區分不同程度的考生。
Thumbnail
2024/05/01
高低分組,顧名思義,就是把考生的成績分成兩組:表現最好的一組和表現最差的一組。依據Kelley(1939),通常前27%的考生是高分組,後27%的考生是低分組。如果高分組和低分組的表現差異很大,那麼說明這題題目鑑別度高,能有效區分不同程度的考生。
Thumbnail
2023/11/23
Groupmean centering是一種常用的資料預處理方法,特別是多層次分析,若要使用Rights & Sterba (2019)(2019) 發展出R2 (R&S),要對需要將層次1的變項和交互作用都 Groupmean centering。本文介紹使用R和SPSS操作方法
Thumbnail
2023/11/23
Groupmean centering是一種常用的資料預處理方法,特別是多層次分析,若要使用Rights & Sterba (2019)(2019) 發展出R2 (R&S),要對需要將層次1的變項和交互作用都 Groupmean centering。本文介紹使用R和SPSS操作方法
Thumbnail
看更多
你可能也想看
Thumbnail
在小小的租屋房間裡,透過蝦皮購物平臺採購各種黏土、模型、美甲材料等創作素材,打造專屬黏土小宇宙的療癒過程。文中分享多個蝦皮挖寶地圖,並推薦蝦皮分潤計畫。
Thumbnail
在小小的租屋房間裡,透過蝦皮購物平臺採購各種黏土、模型、美甲材料等創作素材,打造專屬黏土小宇宙的療癒過程。文中分享多個蝦皮挖寶地圖,並推薦蝦皮分潤計畫。
Thumbnail
小蝸和小豬因購物習慣不同常起衝突,直到發現蝦皮分潤計畫,讓小豬的購物愛好產生價值,也讓小蝸開始欣賞另一半的興趣。想增加收入或改善伴侶間的購物觀念差異?讓蝦皮分潤計畫成為你們的神隊友吧!
Thumbnail
小蝸和小豬因購物習慣不同常起衝突,直到發現蝦皮分潤計畫,讓小豬的購物愛好產生價值,也讓小蝸開始欣賞另一半的興趣。想增加收入或改善伴侶間的購物觀念差異?讓蝦皮分潤計畫成為你們的神隊友吧!
Thumbnail
本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從最簡單的一個Level 1固定自變項模型開始,到複雜的兩個Level 1和1個Level 2固定自變項模型,相信看完後,讀者就會了解雙層次之隨機截距模型概念和操作。
Thumbnail
本章主要說明雙層次之隨機截距模型的公式和SPSS操作,我們先從最簡單的一個Level 1固定自變項模型開始,到複雜的兩個Level 1和1個Level 2固定自變項模型,相信看完後,讀者就會了解雙層次之隨機截距模型概念和操作。
Thumbnail
多元線性迴歸分析(Multiple regression analysis)是一種統計學方法,用於探索多個解釋變量對一個目標變量的影響。它是建立在線性迴歸分析的基礎上的,多元迴歸分析用於探討多個預測變數及一個依變數之間的關係,並且每個變項都是連續變項。本文將介紹多元迴歸分析概念。
Thumbnail
多元線性迴歸分析(Multiple regression analysis)是一種統計學方法,用於探索多個解釋變量對一個目標變量的影響。它是建立在線性迴歸分析的基礎上的,多元迴歸分析用於探討多個預測變數及一個依變數之間的關係,並且每個變項都是連續變項。本文將介紹多元迴歸分析概念。
Thumbnail
驗證性因素分析(Confirmatory Factor Analysis, CFA)常被作為檢驗量表或測量工具之建構效度。做SEM前大多會要求每個工具的CFA結果。不僅如此,CFA也可能拿來檢驗測量衡等性的有效工具。本文將簡介驗證性因素分析概念,並介紹如何用Mplus 操作。
Thumbnail
驗證性因素分析(Confirmatory Factor Analysis, CFA)常被作為檢驗量表或測量工具之建構效度。做SEM前大多會要求每個工具的CFA結果。不僅如此,CFA也可能拿來檢驗測量衡等性的有效工具。本文將簡介驗證性因素分析概念,並介紹如何用Mplus 操作。
Thumbnail
如同跨組比較一樣,跨時間時也需要考量縱向測量衡等性,在分析縱向數據時考慮 測量衡等性 很重要,因為不具有縱向測量衡等性的量表,對結果的有效性和正確性有所影響。縱向衡等性和多群組衡等性的分析策略相似,但在參數設定有些差異,本文將簡介其概念和和Mplus操作。
Thumbnail
如同跨組比較一樣,跨時間時也需要考量縱向測量衡等性,在分析縱向數據時考慮 測量衡等性 很重要,因為不具有縱向測量衡等性的量表,對結果的有效性和正確性有所影響。縱向衡等性和多群組衡等性的分析策略相似,但在參數設定有些差異,本文將簡介其概念和和Mplus操作。
Thumbnail
當與實驗設計結合使用時,MANOVA和ANOVA分析都特別有用; 也就是說,研究設計中研究人員直接控製或操縱一個或多個自變量以確定對因變量的影響。MANOVA比ANOVAE更好的地方在於同時考量多個依變項;MANCOVA比ANCOVA更好的地方在控制控制變項後,同時考量多個依變項。本文將參考Hair
Thumbnail
當與實驗設計結合使用時,MANOVA和ANOVA分析都特別有用; 也就是說,研究設計中研究人員直接控製或操縱一個或多個自變量以確定對因變量的影響。MANOVA比ANOVAE更好的地方在於同時考量多個依變項;MANCOVA比ANCOVA更好的地方在控制控制變項後,同時考量多個依變項。本文將參考Hair
Thumbnail
「共變異數分析 (ANCOVA)」程序會比較一個連續應變數在兩個以上因素變數之間的平均數,並判定共變量的效應以及共變量與因素之間的交互作用。可以在控制共變數分析,可以調查因素之間的交互作用、以及主要效果。ANCOVA通常用於研究中,研究者希望控制控制變項探的情況下,檢驗一個或多個自變量對依變項。
Thumbnail
「共變異數分析 (ANCOVA)」程序會比較一個連續應變數在兩個以上因素變數之間的平均數,並判定共變量的效應以及共變量與因素之間的交互作用。可以在控制共變數分析,可以調查因素之間的交互作用、以及主要效果。ANCOVA通常用於研究中,研究者希望控制控制變項探的情況下,檢驗一個或多個自變量對依變項。
Thumbnail
皮爾森相關係數 (r) 是衡量線性相關性的最常用方法。它是一個介於 –1 和 1 之間的數值,用於衡量兩個變量之間關係的強度和方向。本文簡介公式解釋和SPSS教學。
Thumbnail
皮爾森相關係數 (r) 是衡量線性相關性的最常用方法。它是一個介於 –1 和 1 之間的數值,用於衡量兩個變量之間關係的強度和方向。本文簡介公式解釋和SPSS教學。
Thumbnail
Durbin-Watson test,對模組的殘差項進行相關聯性檢定,常應用於迴歸分析以及需要限制殘差項要為獨立常態分配。不過我在應用上更關心價格資料是否有聚集在均線附近,若有則可以判定盤整盤,反之則有趨勢發生,相關統計檢定計算步驟詳列如下
Thumbnail
Durbin-Watson test,對模組的殘差項進行相關聯性檢定,常應用於迴歸分析以及需要限制殘差項要為獨立常態分配。不過我在應用上更關心價格資料是否有聚集在均線附近,若有則可以判定盤整盤,反之則有趨勢發生,相關統計檢定計算步驟詳列如下
Thumbnail
這篇文章的標題有「預測」二字,但看完之後請大家思考一下,這種基於「統計學」、「機器學習」的預測方法,是否跟你心中的「預測」相差甚遠呢?
Thumbnail
這篇文章的標題有「預測」二字,但看完之後請大家思考一下,這種基於「統計學」、「機器學習」的預測方法,是否跟你心中的「預測」相差甚遠呢?
Thumbnail
我們都知道普遍來講身高越高的人體重越重,身高與體重彼此相關,且是呈現正相關。既然彼此相關,有沒有一個測量標準能夠告訴我們它們有多相關?那就是共變異數和相關係數啦!
Thumbnail
我們都知道普遍來講身高越高的人體重越重,身高與體重彼此相關,且是呈現正相關。既然彼此相關,有沒有一個測量標準能夠告訴我們它們有多相關?那就是共變異數和相關係數啦!
追蹤感興趣的內容從 Google News 追蹤更多 vocus 的最新精選內容追蹤 Google News